scispace - formally typeset
Search or ask a question
Author

Qi Yang

Bio: Qi Yang is an academic researcher from Caliper Corporation. The author has contributed to research in topics: Traffic simulation & Advanced Traffic Management System. The author has an hindex of 10, co-authored 18 publications receiving 1623 citations. Previous affiliations of Qi Yang include Massachusetts Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: The simulator is a component of a larger system for evaluating traffic management systems and interacts with a surveillance module that can represent a wide variety of sensors and a traffic management module which sets traffic signals and signs, routing recommendations, etc.
Abstract: A MIcroscopic Traffic SIMulator (MITSIM) has been developed for modeling traffic networks with advanced traffic control, route guidance and surveillance systems. MITSIM represents networks in detail and simulates individual vehicle movements using car following, lane changing, and traffic signal responding logic. A probabilistic route choice model is used to capture drivers' route choice decisions in the presence of real time traffic information provided by route guidance systems. The simulator is a component of a larger system for evaluating traffic management systems and interacts with a surveillance module that can represent a wide variety of sensors (e.g. loop detectors, area sensors, probe vehicles, etc.) and a traffic management module which sets traffic signals and signs, routing recommendations, etc. MITSIM is coded in C+ + using object-oriented design and supports distributed implementation. It includes a graphical user interface for animating vehicle movements in the network and displaying aggregate traffic information such as speed and density.

696 citations

Journal ArticleDOI
TL;DR: An important feature of MITSIMLab is its ability to model ATMS or ATIS that generate traffic controls and route guidance based on predicted traffic conditions, including animation of vehicle movements.
Abstract: Advanced traffic management systems (ATMS) and advanced traveler information systems (ATIS) are promising technologies for achieving efficiency in the operation of transportation systems. A simulation-based laboratory environment, MITSIMLab, is presented that is designed for testing and evaluation of dynamic traffic management systems. The core of MITSIMLab is a microscopic traffic simulator (MITSIM) and a traffic management simulator (TMS). MITSIM represents traffic flows in the network, and the TMS represents the traffic management system under evaluation. An important feature of MITSIMLab is its ability to model ATMS or ATIS that generate traffic controls and route guidance based on predicted traffic conditions. A graphical user interface allows visualization of the simulation, including animation of vehicle movements. An ATIS case study with a realistic network is also presented to demonstrate the functionality of MITSIMLab.

349 citations

Patent
14 Mar 2014
TL;DR: In this paper, a lane-level vehicle routing and navigation apparatus includes a simulation module that performs microsimulation of individual vehicles in a traffic stream, and a lanelevel optimizer that evaluates conditions along the candidate paths from an origin to a destination as determined by the simulation module, and determines recommended lanelevel maneuvers along candidate paths.
Abstract: A lane-level vehicle routing and navigation apparatus includes a simulation module that performs microsimulation of individual vehicles in a traffic stream, and a lane-level optimizer that evaluates conditions along the candidate paths from an origin to a destination as determined by the simulation module, and determines recommended lane-level maneuvers along the candidate paths. A link-level optimizer may determines the candidate paths based on link travel times determined by the simulation module. The simulation may be based on real-time traffic condition data. Recommended candidate paths may be provided to delivery or service or emergency response vehicles, or used for evacuation planning, or to route vehicles such as garbage or postal trucks, or snowplows. Corresponding methods also may be used for traffic planning and management, including determining, based on microsimulation, at least one of (a) altered road geometry, (b) altered traffic signal settings, such as traffic signal timing, or (c) road pricing.

144 citations

Patent
24 Jun 2002
TL;DR: In this paper, the authors integrate geographical information systems (GIS) with traffic simulation processes to allow a user to analyze traffic patterns and loads at specific geographic locations of regions of regions.
Abstract: Systems and methods for geographically based analyses of traffic being carried over a wide scale traffic network (10). The systems integrate (12) geographical information systems (GIS) with traffic simulation processes (18, 20) to allow a user to analyze traffic patterns and loads at specific geographic locations of regions. Additionally, these systems allow for traffic analysis over a wide scale traffic network that may encompass the traffic network that exists within an geographic region and can include, as examples, the traffic networks that span across a city, that interconnect cities, that interconnect states and that run across multiple states. To this end, the systems include traffic simulators that can adaptively or controllably select between multiple traffic simulation models for simulating traffic across different segments of the traffic network (18, 20). The different models provide varying levels of granularity for measurements of geographical location of a vehicle traveling over the traffic network. Thus, portions of the traffic network that are to be analyzed more closely can use the traffic simulator model with the highest degree of granularity, while traffic patterns across other areas of the network may be modeled with lower granularity models that may provide for computational efficiency.

100 citations

Journal ArticleDOI
TL;DR: A PC-based driving simulator that can be used for collecting relevant data in a controlled environment and to calibrate a new class of route choice models in the presence of information, which are based on concepts from fuzzy sets and approximate reasoning.
Abstract: Models for route choice in the presence of information and motorist reaction to route guidance are currently under development. A major difficulty in developing such models is the lack of appropriate data for testing and calibration. This paper describes a PC-based driving simulator that can be used for collecting relevant data in a controlled environment. The simulator uses 2-D graphics, and consists of three main modules: network performance, guidance generation, and user interface. A flexible design permits the simulation of a wide variety of information systems on any network. The functionality of the driving simulator is demonstrated in a case study with data collected from a group of 10 subjects. The data was used to calibrate a new class of route choice models in the presence of information, which are based on concepts from fuzzy sets and approximate reasoning. The results indicate that until data collected on actual route choice behavior in the presence of information becomes available, appropriately designed driving simulators can become useful tools.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic, including microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models.
Abstract: Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

3,117 citations

Journal ArticleDOI
TL;DR: AntNet is a distributed, mobile agents based Monte Carlo system that was inspired by recent work on the ant colony metaphor for solving optimization problems, and showed superior performance under all the experimental conditions with respect to its competitors.
Abstract: This paper introduces AntNet, a novel approach to the adaptive learning of routing tables in communications networks. AntNet is a distributed, mobile agents based Monte Carlo system that was inspired by recent work on the ant colony metaphor for solving optimization problems. AntNet's agents concurrently explore the network and exchange collected information. The communication among the agents is indirect and asynchronous, mediated by the network itself. This form of communication is typical of social insects and is called stigmergy. We compare our algorithm with six state-of-the-art routing algorithms coming from the telecommunications and machine learning fields. The algorithms' performance is evaluated over a set of realistic testbeds. We run many experiments over real and artificial IP datagram networks with increasing number of nodes and under several paradigmatic spatial and temporal traffic distributions. Results are very encouraging. AntNet showed superior performance under all the experimental conditions with respect to its competitors. We analyze the main characteristics of the algorithm and try to explain the reasons for its superiority.

1,712 citations

Journal ArticleDOI
TL;DR: The feasibility of applying SVR in travel-time prediction is demonstrated and it is proved that SVR is applicable and performs well for traffic data analysis.
Abstract: Travel time is a fundamental measure in transportation. Accurate travel-time prediction also is crucial to the development of intelligent transportation systems and advanced traveler information systems. We apply support vector regression (SVR) for travel-time prediction and compare its results to other baseline travel-time prediction methods using real highway traffic data. Since support vector machines have greater generalization ability and guarantee global minima for given training data, it is believed that SVR will perform well for time series analysis. Compared to other baseline predictors, our results show that the SVR predictor can significantly reduce both relative mean errors and root-mean-squared errors of predicted travel times. We demonstrate the feasibility of applying SVR in travel-time prediction and prove that SVR is applicable and performs well for traffic data analysis.

1,179 citations

Journal ArticleDOI
TL;DR: A general model (minimizing overall braking induced by lane change, MOBIL) is proposed to derive lane-changing rules for discretionary and mandatory lane changes for a wide class of car-following models and allows one to vary the motivation for lane changing from purely egoistic to more cooperative driving behavior.
Abstract: A general model (minimizing overall braking induced by lane change, MOBIL) is proposed to derive lane-changing rules for discretionary and mandatory lane changes for a wide class of car-following models. Both the utility of a given lane and the risk associated with lane changes are determined in terms of longitudinal accelerations calculated with microscopic traffic models. This determination allows for the formulation of compact and general safety and incentive criteria for both symmetric and asymmetric passing rules. Moreover, anticipative elements and the crucial influence of velocity differences of these car-following models are automatically transferred to the lane-changing rules. Although the safety criterion prevents critical lane changes and collisions, the incentive criterion takes into account the advantages and disadvantages of other drivers associated with a lane change via the "politeness factor." The parameter allows one to vary the motivation for lane changing from purely egoistic to more c...

976 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities, and the stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles.
Abstract: The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.

893 citations