scispace - formally typeset
Author

Qi Zhang

Bio: Qi Zhang is an academic researcher from Fudan University. The author has contributed to research in topic(s): Feature learning & Feature (computer vision). The author has an hindex of 20, co-authored 100 publication(s) receiving 1563 citation(s). Previous affiliations of Qi Zhang include Minjiang University & Duke University.


Papers
More filters
Journal ArticleDOI

[...]

Jun Shi1, Xiao Zheng1, Yan Li2, Qi Zhang1, Shihui Ying1 
TL;DR: Experimental results indicate that MM-SDPN is superior over the state-of-the-art multimodal feature-learning-based algorithms for AD diagnosis.
Abstract: The accurate diagnosis of Alzheimer's disease (AD) and its early stage, i.e., mild cognitive impairment, is essential for timely treatment and possible delay of AD. Fusion of multimodal neuroimaging data, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), has shown its effectiveness for AD diagnosis. The deep polynomial networks (DPN) is a recently proposed deep learning algorithm, which performs well on both large-scale and small-size datasets. In this study, a multimodal stacked DPN (MM-SDPN) algorithm, which MM-SDPN consists of two-stage SDPNs, is proposed to fuse and learn feature representation from multimodal neuroimaging data for AD diagnosis. Specifically speaking, two SDPNs are first used to learn high-level features of MRI and PET, respectively, which are then fed to another SDPN to fuse multimodal neuroimaging information. The proposed MM-SDPN algorithm is applied to the ADNI dataset to conduct both binary classification and multiclass classification tasks. Experimental results indicate that MM-SDPN is superior over the state-of-the-art multimodal feature-learning-based algorithms for AD diagnosis.

205 citations

Journal ArticleDOI

[...]

TL;DR: A deep learning architecture for automated extraction of learned-from-data image features from the shear-wave elastography (SWE) that integrates feature learning with feature selection on SWE is built and may be potentially used in clinical computer-aided diagnosis of breast cancer.
Abstract: This study aims to build a deep learning (DL) architecture for automated extraction of learned-from-data image features from the shear-wave elastography (SWE), and to evaluate the DL architecture in differentiation between benign and malignant breast tumors. We construct a two-layer DL architecture for SWE feature extraction, comprised of the point-wise gated Boltzmann machine (PGBM) and the restricted Boltzmann machine (RBM). The PGBM contains task-relevant and task-irrelevant hidden units, and the task-relevant units are connected to the RBM. Experimental evaluation was performed with five-fold cross validation on a set of 227 SWE images, 135 of benign tumors and 92 of malignant tumors, from 121 patients. The features learned with our DL architecture were compared with the statistical features quantifying image intensity and texture. Results showed that the DL features achieved better classification performance with an accuracy of 93.4%, a sensitivity of 88.6%, a specificity of 97.1%, and an area under the receiver operating characteristic curve of 0.947. The DL-based method integrates feature learning with feature selection on SWE. It may be potentially used in clinical computer-aided diagnosis of breast cancer.

135 citations

Journal ArticleDOI

[...]

TL;DR: A stacked DPN (S-DPN) algorithm is proposed to further improve the representation performance of the original DPN, and S-DPn is applied to the task of texture feature learning for ultrasound based tumor classification with small dataset, suggesting that S- DPN can be a strong candidate for the texture feature representation learning on small ultrasound datasets.
Abstract: Ultrasound imaging has been widely used for tumor detection and diagnosis. In ultrasound based computer-aided diagnosis, feature representation is a crucial step. In recent years, deep learning (DL) has achieved great success in feature representation learning. However, it generally suffers from the small sample size problem. Since the medical datasets usually have small training samples, texture features are still very commonly used for small ultrasound image datasets. Compared with the commonly used DL algorithms, the newly proposed deep polynomial network (DPN) algorithm not only shows superior performance on large scale data, but also has the potential to learn effective feature representation from a relatively small dataset. In this work, a stacked DPN (S-DPN) algorithm is proposed to further improve the representation performance of the original DPN, and S-DPN is then applied to the task of texture feature learning for ultrasound based tumor classification with small dataset. The task tumor classification is performed on two image dataset, namely the breast B-mode ultrasound dataset and prostate ultrasound elastography dataset. In both cases, experimental results show that S-DPN achieves the best performance with classification accuracies of 92.40?1.1% and 90.28?2.78% on breast and prostate ultrasound datasets, respectively. This level of accuracy is significantly superior to all other compared algorithms in this work, including stacked auto-encoder and deep belief network. It suggests that S-DPN can be a strong candidate for the texture feature representation learning on small ultrasound datasets. We employ DPN to learn texture feature representation for small ultrasound dataset.We propose the stacked DPN (S-DPN) algorithm for representation learning.We apply S-DPN to the ultrasound-based tumor classification task.S-DPN can significantly improve representation performance for small ultrasound dataset.

120 citations

Journal ArticleDOI

[...]

TL;DR: CT quantification of pneumonia lesions can early and non-invasively predict the progression to severe illness, providing a promising prognostic indicator for clinical management of COVID-19.
Abstract: Rationale: Some patients with coronavirus disease 2019 (COVID-19) rapidly develop respiratory failure or even die, underscoring the need for early identification of patients at elevated risk of severe illness. This study aims to quantify pneumonia lesions by computed tomography (CT) in the early days to predict progression to severe illness in a cohort of COVID-19 patients. Methods: This retrospective cohort study included confirmed COVID-19 patients. Three quantitative CT features of pneumonia lesions were automatically calculated using artificial intelligence algorithms, representing the percentages of ground-glass opacity volume (PGV), semi-consolidation volume (PSV), and consolidation volume (PCV) in both lungs. CT features, acute physiology and chronic health evaluation II (APACHE-II) score, neutrophil-to-lymphocyte ratio (NLR), and d-dimer, on day 0 (hospital admission) and day 4, were collected to predict the occurrence of severe illness within a 28-day follow-up using both logistic regression and Cox proportional hazard models. Results: We included 134 patients, of whom 19 (14.2%) developed any severe illness. CT features on day 0 and day 4, as well as their changes from day 0 to day 4, showed predictive capability. Changes in CT features from day 0 to day 4 performed the best in the prediction (area under the receiver operating characteristic curve = 0.93, 95% confidence interval [CI] 0.87~0.99; C-index=0.88, 95% CI 0.81~0.95). The hazard ratios of PGV and PCV were 1.39 (95% CI 1.05~1.84, P=0.023) and 1.67 (95% CI 1.17~2.38, P=0.005), respectively. CT features, adjusted for age and gender, on day 4 and in terms of changes from day 0 to day 4 outperformed APACHE-II, NLR, and d-dimer. Conclusions: CT quantification of pneumonia lesions can early and non-invasively predict the progression to severe illness, providing a promising prognostic indicator for clinical management of COVID-19.

118 citations

Journal ArticleDOI

[...]

TL;DR: For a data set containing 42 malignant and 75 benign tumors from 117 patients, seven selected sonoelastomic features achieved an area under the receiver operating characteristic curve of 0.917, revealing superiority over the principal component analysis, deep polynomial networks and manually selected features.
Abstract: A radiomics approach to sonoelastography, called "sonoelastomics," is proposed for classification of benign and malignant breast tumors. From sonoelastograms of breast tumors, a high-throughput 364-dimensional feature set was calculated consisting of shape features, intensity statistics, gray-level co-occurrence matrix texture features and contourlet texture features, which quantified the shape, hardness and hardness heterogeneity of a tumor. The high-throughput features were then selected for feature reduction using hierarchical clustering and three-feature selection metrics. For a data set containing 42 malignant and 75 benign tumors from 117 patients, seven selected sonoelastomic features achieved an area under the receiver operating characteristic curve of 0.917, an accuracy of 88.0%, a sensitivity of 85.7% and a specificity of 89.3% in a validation set via the leave-one-out cross-validation, revealing superiority over the principal component analysis, deep polynomial networks and manually selected features. The sonoelastomic features are valuable in breast tumor differentiation.

64 citations


Cited by
More filters

[...]

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI

[...]

TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.
Abstract: Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.

5,977 citations

Journal ArticleDOI

[...]

07 Apr 2020-BMJ
TL;DR: Proposed models for covid-19 are poorly reported, at high risk of bias, and their reported performance is probably optimistic, according to a review of published and preprint reports.
Abstract: Objective To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. Design Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. Data sources PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. Study selection Studies that developed or validated a multivariable covid-19 related prediction model. Data extraction At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). Results 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. Conclusion Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. Systematic review registration Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. Readers’ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity.

1,358 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the authors describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity.
Abstract: Summary Background The long-term health consequences of COVID-19 remain largely unclear. The aim of this study was to describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity. Methods We did an ambidirectional cohort study of patients with confirmed COVID-19 who had been discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7, 2020, and May 29, 2020. Patients who died before follow-up, patients for whom follow-up would be difficult because of psychotic disorders, dementia, or re-admission to hospital, those who were unable to move freely due to concomitant osteoarthropathy or immobile before or after discharge due to diseases such as stroke or pulmonary embolism, those who declined to participate, those who could not be contacted, and those living outside of Wuhan or in nursing or welfare homes were all excluded. All patients were interviewed with a series of questionnaires for evaluation of symptoms and health-related quality of life, underwent physical examinations and a 6-min walking test, and received blood tests. A stratified sampling procedure was used to sample patients according to their highest seven-category scale during their hospital stay as 3, 4, and 5–6, to receive pulmonary function test, high resolution CT of the chest, and ultrasonography. Enrolled patients who had participated in the Lopinavir Trial for Suppression of SARS-CoV-2 in China received severe acute respiratory syndrome coronavirus 2 antibody tests. Multivariable adjusted linear or logistic regression models were used to evaluate the association between disease severity and long-term health consequences. Findings In total, 1733 of 2469 discharged patients with COVID-19 were enrolled after 736 were excluded. Patients had a median age of 57·0 (IQR 47·0–65·0) years and 897 (52%) were men. The follow-up study was done from June 16, to Sept 3, 2020, and the median follow-up time after symptom onset was 186·0 (175·0–199·0) days. Fatigue or muscle weakness (63%, 1038 of 1655) and sleep difficulties (26%, 437 of 1655) were the most common symptoms. Anxiety or depression was reported among 23% (367 of 1617) of patients. The proportions of median 6-min walking distance less than the lower limit of the normal range were 24% for those at severity scale 3, 22% for severity scale 4, and 29% for severity scale 5–6. The corresponding proportions of patients with diffusion impairment were 22% for severity scale 3, 29% for scale 4, and 56% for scale 5–6, and median CT scores were 3·0 (IQR 2·0–5·0) for severity scale 3, 4·0 (3·0–5·0) for scale 4, and 5·0 (4·0–6·0) for scale 5–6. After multivariable adjustment, patients showed an odds ratio (OR) 1·61 (95% CI 0·80–3·25) for scale 4 versus scale 3 and 4·60 (1·85–11·48) for scale 5–6 versus scale 3 for diffusion impairment; OR 0·88 (0·66–1·17) for scale 4 versus scale 3 and OR 1·77 (1·05–2·97) for scale 5–6 versus scale 3 for anxiety or depression, and OR 0·74 (0·58–0·96) for scale 4 versus scale 3 and 2·69 (1·46–4·96) for scale 5–6 versus scale 3 for fatigue or muscle weakness. Of 94 patients with blood antibodies tested at follow-up, the seropositivity (96·2% vs 58·5%) and median titres (19·0 vs 10·0) of the neutralising antibodies were significantly lower compared with at the acute phase. 107 of 822 participants without acute kidney injury and with estimated glomerular filtration rate (eGFR) 90 mL/min per 1·73 m2 or more at acute phase had eGFR less than 90 mL/min per 1·73 m2 at follow-up. Interpretation At 6 months after acute infection, COVID-19 survivors were mainly troubled with fatigue or muscle weakness, sleep difficulties, and anxiety or depression. Patients who were more severely ill during their hospital stay had more severe impaired pulmonary diffusion capacities and abnormal chest imaging manifestations, and are the main target population for intervention of long-term recovery. Funding National Natural Science Foundation of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, National Key Research and Development Program of China, Major Projects of National Science and Technology on New Drug Creation and Development of Pulmonary Tuberculosis, and Peking Union Medical College Foundation.

884 citations

Journal ArticleDOI

[...]

TL;DR: It is shown that generated medical images can be used for synthetic data augmentation, and improve the performance of CNN for medical image classification, and generalize to other medical classification applications and thus support radiologists’ efforts to improve diagnosis.
Abstract: Deep learning methods, and in particular convolutional neural networks (CNNs), have led to an enormous breakthrough in a wide range of computer vision tasks, primarily by using large-scale annotated datasets. However, obtaining such datasets in the medical domain remains a challenge. In this paper, we present methods for generating synthetic medical images using recently presented deep learning Generative Adversarial Networks (GANs). Furthermore, we show that generated medical images can be used for synthetic data augmentation, and improve the performance of CNN for medical image classification. Our novel method is demonstrated on a limited dataset of computed tomography (CT) images of 182 liver lesions (53 cysts, 64 metastases and 65 hemangiomas). We first exploit GAN architectures for synthesizing high quality liver lesion ROIs. Then we present a novel scheme for liver lesion classification using CNN. Finally, we train the CNN using classic data augmentation and our synthetic data augmentation and compare performance. In addition, we explore the quality of our synthesized examples using visualization and expert assessment. The classification performance using only classic data augmentation yielded 78.6% sensitivity and 88.4% specificity. By adding the synthetic data augmentation the results increased to 85.7% sensitivity and 92.4% specificity. We believe that this approach to synthetic data augmentation can generalize to other medical classification applications and thus support radiologists’ efforts to improve diagnosis.

724 citations