scispace - formally typeset
Search or ask a question
Author

Qi Zhang

Bio: Qi Zhang is an academic researcher from Fudan University. The author has contributed to research in topics: Medicine & Ultrasound. The author has an hindex of 20, co-authored 100 publications receiving 1563 citations. Previous affiliations of Qi Zhang include Minjiang University & Duke University.


Papers
More filters
Journal ArticleDOI
TL;DR: A progressive wide residual network with a fixed skip connection (named FSCWRN) based SR algorithm is proposed to reconstruct MR images, which combines the global residual learning and the shallow network based local residual learning.
Abstract: Spatial resolution is a critical imaging parameter in magnetic resonance imaging. The image super-resolution (SR) is an effective and cost efficient alternative technique to improve the spatial resolution of MR images. Over the past several years, the convolutional neural networks (CNN)-based SR methods have achieved state-of-the-art performance. However, CNNs with very deep network structures usually suffer from the problems of degradation and diminishing feature reuse, which add difficulty to network training and degenerate the transmission capability of details for SR. To address these problems, in this work, a progressive wide residual network with a fixed skip connection (named FSCWRN) based SR algorithm is proposed to reconstruct MR images, which combines the global residual learning and the shallow network based local residual learning. The strategy of progressive wide networks is adopted to replace deeper networks, which can partially relax the above-mentioned problems, while a fixed skip connection helps provide rich local details at high frequencies from a fixed shallow layer network to subsequent networks. The experimental results on one simulated MR image database and three real MR image databases show the effectiveness of the proposed FSCWRN SR algorithm, which achieves improved reconstruction performance compared with other algorithms.

88 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: A novel BCNN-based method is proposed, which first decomposes histopathological images into hematoxylin and eosin stain components, and then performs BCNN on the decomposed images to fuse and improve the feature representation performance.
Abstract: The computer-aided quantitative analysis for histopathological images has attracted considerable attention. The stain decomposition on histopathological images is usually recommended to address the issue of co-localization or aliasing of tissue substances. Although the convolutional neural networks (CNN) is a popular deep learning algorithm for various tasks on histopathological image analysis, it is only directly performed on histopathological images without considering stain decomposition. The bilinear CNN (BCNN) is a new CNN model for fine-grained classification. BCNN consists of two CNNs, whose convolutional-layer outputs are multiplied with outer product at each spatial location. In this work, we propose a novel BCNN-based method for classification of histopathological images, which first decomposes histopathological images into hematoxylin and eosin stain components, and then perform BCNN on the decomposed images to fuse and improve the feature representation performance. The experimental results on the colorectal cancer histopathological image dataset with eight classes indicate that the proposed BCNN-based algorithm is superior to the traditional CNN.

88 citations

Journal ArticleDOI
TL;DR: For a data set containing 42 malignant and 75 benign tumors from 117 patients, seven selected sonoelastomic features achieved an area under the receiver operating characteristic curve of 0.917, revealing superiority over the principal component analysis, deep polynomial networks and manually selected features.
Abstract: A radiomics approach to sonoelastography, called "sonoelastomics," is proposed for classification of benign and malignant breast tumors. From sonoelastograms of breast tumors, a high-throughput 364-dimensional feature set was calculated consisting of shape features, intensity statistics, gray-level co-occurrence matrix texture features and contourlet texture features, which quantified the shape, hardness and hardness heterogeneity of a tumor. The high-throughput features were then selected for feature reduction using hierarchical clustering and three-feature selection metrics. For a data set containing 42 malignant and 75 benign tumors from 117 patients, seven selected sonoelastomic features achieved an area under the receiver operating characteristic curve of 0.917, an accuracy of 88.0%, a sensitivity of 85.7% and a specificity of 89.3% in a validation set via the leave-one-out cross-validation, revealing superiority over the principal component analysis, deep polynomial networks and manually selected features. The sonoelastomic features are valuable in breast tumor differentiation.

88 citations

Journal ArticleDOI
Zhao Yao1, Yi Dong1, Guoqing Wu1, Qi Zhang1, Daohui Yang1, Jinhua Yu1, Wenping Wang1 
TL;DR: Radiomics analysis based on multi-modal ultrasound images could aid in comprehensive liver tumor evaluations, including diagnosis, differential diagnosis, and clinical prognosis.
Abstract: This study aims to establish a radiomics analysis system for the diagnosis and clinical behaviour prediction of hepatocellular carcinoma (HCC) based on multi-parametric ultrasound imaging. A total of 177 patients with focal liver lesions (FLLs) were included in the study. Every patient underwent multi-modal ultrasound examination, including B-mode ultrasound (BMUS), shear wave elastography (SWE), and shear wave viscosity (SWV) imaging. The radiomics analysis system was built on sparse representation theory (SRT) and support vector machine (SVM) for asymmetric data. Through the sparse regulation from the SRT, the proposed radiomics system can effectively avoid over-fitting issues that occur in regular radiomics analysis. The purpose of the proposed system includes differential diagnosis between benign and malignant FLLs, pathologic diagnosis of HCC, and clinical prognostic prediction. Three biomarkers, including programmed cell death protein 1 (PD-1), antigen Ki-67 (Ki-67) and microvascular invasion (MVI), were included and analysed. We calculated the accuracy (ACC), sensitivity (SENS), specificity (SPEC) and area under the receiver operating characteristic curve (AUC) to evaluate the performance of the radiomics models. A total of 2560 features were extracted from the multi-modal ultrasound images for each patient. Five radiomics models were built, and leave-one-out cross-validation (LOOCV) was used to evaluate the models. In LOOCV, the AUC was 0.94 for benign and malignant classification (95% confidence interval [CI]: 0.88 to 0.98), 0.97 for malignant subtyping (95% CI: 0.93 to 0.99), 0.97 for PD-1 prediction (95% CI: 0.89 to 0.98), 0.94 for Ki-67 prediction (95% CI: 0.87 to 0.97), and 0.98 for MVI prediction (95% CI: 0.93 to 0.99). The performance of each model improved when the viscosity modality was included. Radiomics analysis based on multi-modal ultrasound images could aid in comprehensive liver tumor evaluations, including diagnosis, differential diagnosis, and clinical prognosis.

84 citations

Journal ArticleDOI
TL;DR: The experimental results indicate that the proposed DCCA-MKL framework achieves best performance for discriminating benign liver tumors from malignant liver cancers and it is proved that the three-phase CEUS image based CAD is feasible for liver tumors with the proposed MLC framework.
Abstract: OBJECTIVE With the fast development of artificial intelligence techniques, we proposed a novel two-stage multi-view learning framework for the contrast-enhanced ultrasound (CEUS) based computer-aided diagnosis for liver tumors, which adopted only three typical CEUS images selected from the arterial phase, portal venous phase and late phase. MATERIALS AND METHODS In the first stage, the deep canonical correlation analysis (DCCA) was performed on three image pairs between the arterial and portal venous phases, arterial and delayed phases, and portal venous and delayed phases respectively, which then generated total six-view features. While in the second stage, these multi-view features were then fed to a multiple kernel learning (MKL) based classifier to further promote the diagnosis result. Two MKL classification algorithms were evaluated in this MKL-based classification framework. We evaluated proposed DCCA-MKL framework on 93 lesions (47 malignant cancers vs. 46 benign tumors). RESULTS The proposed DCCA-MKL framework achieved the mean classification accuracy, sensitivity, specificity, Youden index, false positive rate, and false negative rate of 90.41 ± 5.80%, 93.56 ± 5.90%, 86.89 ± 9.38%, 79.44 ± 11.83%, 13.11 ± 9.38% and 6.44 ± 5.90%, respectively, by soft margin MKL classifier. CONCLUSION The experimental results indicate that the proposed DCCA-MKL framework achieves best performance for discriminating benign liver tumors from malignant liver cancers. Moreover, it is also proved that the three-phase CEUS image based CAD is feasible for liver tumors with the proposed DCCA-MKL framework.

71 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity.

2,933 citations

Journal ArticleDOI
07 Apr 2020-BMJ
TL;DR: Proposed models for covid-19 are poorly reported, at high risk of bias, and their reported performance is probably optimistic, according to a review of published and preprint reports.
Abstract: Objective To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. Design Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. Data sources PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. Study selection Studies that developed or validated a multivariable covid-19 related prediction model. Data extraction At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). Results 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. Conclusion Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. Systematic review registration Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. Readers’ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity.

2,183 citations