scispace - formally typeset
Search or ask a question
Author

Qi Zhang

Bio: Qi Zhang is an academic researcher from Fudan University. The author has contributed to research in topics: Medicine & Ultrasound. The author has an hindex of 20, co-authored 100 publications receiving 1563 citations. Previous affiliations of Qi Zhang include Minjiang University & Duke University.


Papers
More filters
Journal ArticleDOI
TL;DR: An ultrasound elastography technique based on registration of CEUS sequential images is developed and used for direct comparison between IPN and plaque elasticity and might be helpful for evaluation of carotid plaque vulnerability and for plaque risk stratification.

24 citations

Journal ArticleDOI
TL;DR: Factor analysis is applied to a set of 14 geometric variables obtained from magnetic resonance images of 50 human carotid bifurcations, finding that the predictability of the hemodynamic metrics and relative risk is only modestly sensitive to assumptions about flow rates and flow partitions in the bifircation.
Abstract: The detailed geometry of atherosclerosis-prone vascular segments may influence their susceptibility by mediating local hemodynamics. An appreciation of the role of specific geometric variables is complicated by the considerable correlation among the many parameters that can be used to describe arterial shape and size. Factor analysis is a useful tool for identifying the essential features of such an inter-related data set, as well as for predicting hemodynamic risk in terms of these features and for interpreting the role of specific geometric variables. Here, factor analysis is applied to a set of 14 geometric variables obtained from magnetic resonance images of 50 human carotid bifurcations. Two factors alone were capable of predicting 12 hemodynamic metrics related to shear and near-wall residence time with adjusted squared Pearson's correlation coefficient as high as 0.54 and P-values less than 0.0001. One factor measures cross-sectional expansion at the bifurcation; the other measures the colinearity of the common and internal carotid artery axes at the bifurcation. The factors explain the apparent lack of an effect of branch angle on hemodynamic risk. The relative risk among the 50 bifurcations, based on time-average wall shear stress, could be predicted with a sensitivity and specificity as high as 0.84. The predictability of the hemodynamic metrics and relative risk is only modestly sensitive to assumptions about flow rates and flow partitions in the bifurcation.

24 citations

Journal ArticleDOI
TL;DR: A deep neural mapping large margin distribution machine (DNMLDM) algorithm is proposed by adopting the deep neural network (DNN) to perform a kernel mapping instead of the implicit kernel function in LDM, which outperforms all the compared algorithms on both datasets.

23 citations

Journal ArticleDOI
TL;DR: By analyzing the hypoenhancement in the PVLP, CEUS imaging reliably diagnosed f-HCC as a malignant FLL.
Abstract: Purpose Fibrolamellar hepatocellular carcinoma (f-HCC) is a rare primary liver tumor. Imaging plays an important role in diagnosis. The aim of this retrospective study was to analyze contrast-enhanced ultrasound (CEUS) features of histologically proven f-HCC in comparison to benign focal nodular hyperplasia (FNH). Materials & Methods 16 patients with histologically proven f-HCC lesions and 30 patients with FNH lesions were retrospectively reviewed regarding CEUS features to determine the malignant or benign nature of the focal liver lesions (FLL). Five radiologists assessed the CEUS enhancement pattern and came to a consensus using the EFSUMB (European Federation of Societies for Ultrasound in Medicine and Biology) guideline criteria. Results Fibrolamellar hepatocellular carcinoma manifested as a single and huge FLL. On CEUS, f-HCC showed heterogeneous hyperenhancement in the arterial phase and hypoenhancement (16/16, 100 %) in the portal venous and late phases (PVLP) as a sign of malignancy. In contrast to the hypoenhancement of f-HCC in the PVLP, all patients with FNH showed hyperenhancement as the most distinctive feature (P 0.05). Conclusion By analyzing the hypoenhancement in the PVLP, CEUS imaging reliably diagnosed f-HCC as a malignant FLL. CEUS also showed differentiation between f-HCC and FNH lesions, showing similar non-enhanced central scars, whereas f-HCC lesions showed peripheral hyperenhancement in the arterial phase and early washout in the PVLP.

22 citations

Journal ArticleDOI
26 Mar 2021
TL;DR: Wang et al. as mentioned in this paper used DenseNet201 network, focal loss, long short-term memory (LSTM) network and gradient boosting classifier to predict blastocyst formation and usable blastocysts using TLM videos of the embryo's first three days.
Abstract: Approaches to reliably predict the developmental potential of embryos and select suitable embryos for blastocyst culture are needed. The development of time-lapse monitoring (TLM) and artificial intelligence (AI) may help solve this problem. Here, we report deep learning models that can accurately predict blastocyst formation and usable blastocysts using TLM videos of the embryo's first three days. The DenseNet201 network, focal loss, long short-term memory (LSTM) network and gradient boosting classifier were mainly employed, and video preparation algorithms, spatial stream and temporal stream models were developed into ensemble prediction models called STEM and STEM+. STEM exhibited 78.2% accuracy and 0.82 AUC in predicting blastocyst formation, and STEM+ achieved 71.9% accuracy and 0.79 AUC in predicting usable blastocysts. We believe the models are beneficial for blastocyst formation prediction and embryo selection in clinical practice, and our modeling methods will provide valuable information for analyzing medical videos with continuous appearance variation.

22 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity.

2,933 citations

Journal ArticleDOI
07 Apr 2020-BMJ
TL;DR: Proposed models for covid-19 are poorly reported, at high risk of bias, and their reported performance is probably optimistic, according to a review of published and preprint reports.
Abstract: Objective To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. Design Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. Data sources PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. Study selection Studies that developed or validated a multivariable covid-19 related prediction model. Data extraction At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). Results 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. Conclusion Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. Systematic review registration Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. Readers’ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity.

2,183 citations