scispace - formally typeset
Search or ask a question
Author

Qi Zhang

Bio: Qi Zhang is an academic researcher from Fudan University. The author has contributed to research in topics: Medicine & Ultrasound. The author has an hindex of 20, co-authored 100 publications receiving 1563 citations. Previous affiliations of Qi Zhang include Minjiang University & Duke University.


Papers
More filters
Proceedings ArticleDOI
Xiao Zheng1, Jun Shi1, Yan Li2, Xiao Liu1, Qi Zhang1 
13 Apr 2016
TL;DR: A stacked DPN (S- DPN) algorithm is proposed to further improve feature representation and a multi-modality S-DPN (MM-S-DPn) algorithm to fuse multi- modality neuroimaging data and learn more discriminative and robust feature representation for AD classification is proposed.
Abstract: Feature representation is the critical factor for the computer-aided Alzheimer's disease (AD) diagnosis. Deep polynomial network (DPN) is a novel deep learning algorithm, which can effectively learn feature representation from small samples. In this work, a stacked DPN (S-DPN) algorithm is proposed to further improve feature representation. We then propose a multi-modality S-DPN (MM-S-DPN) algorithm to fuse multi-modality neuroimaging data and learn more discriminative and robust feature representation for AD classification. Experiments are performed on ADNI dataset with MRI and PET images as multi-modality data. The results indicate that S-DPN is superior to DPN and stacked auto-encoder algorithms. Moreover, MM-S-DPN achieves best performance compared with single-modality S-DPN and other multi-modality feature learning based algorithms.

20 citations

Journal ArticleDOI
Meng Dai1, Shuying Li1, Yuanyuan Wang1, Qi Zhang2, Jinhua Yu1 
TL;DR: The proposed and validated post-processing method combined with deep learning to improve the imaging quality of UCPWI illustrates superior imaging performance and high reproducibility, and thus is promising in improving the contrast image quality and the clinical value of U CPWI.
Abstract: Improving imaging quality is a fundamental problem in ultrasound contrast agent imaging (UCAI) research. Plane wave imaging (PWI) has been deemed as a potential method for UCAI due to its’ high frame rate and low mechanical index. High frame rate can improve the temporal resolution of UCAI. Meanwhile, low mechanical index is essential to UCAI since microbubbles can be easily broken under high mechanical index conditions. However, the clinical practice of ultrasound contrast agent plane wave imaging (UCPWI) is still limited by poor imaging quality for lack of transmit focus. The purpose of this study was to propose and validate a new post-processing method that combined with deep learning to improve the imaging quality of UCPWI. The proposed method consists of three stages: (1) first, a deep learning approach based on U-net was trained to differentiate the microbubble and tissue radio frequency (RF) signals; (2) then, to eliminate the remaining tissue RF signals, the bubble approximated wavelet transform (BAWT) combined with maximum eigenvalue threshold was employed. BAWT can enhance the UCA area brightness, and eigenvalue threshold can be set to eliminate the interference areas due to the large difference of maximum eigenvalue between UCA and tissue areas; (3) finally, the accurate microbubble imaging were obtained through eigenspace-based minimum variance (ESBMV). The proposed method was validated by both phantom and in vivo rabbit experiment results. Compared with UCPWI based on delay and sum (DAS), the imaging contrast-to-tissue ratio (CTR) and contrast-to-noise ratio (CNR) was improved by 21.3 dB and 10.4 dB in the phantom experiment, and the corresponding improvements were 22.3 dB and 42.8 dB in the rabbit experiment. Our method illustrates superior imaging performance and high reproducibility, and thus is promising in improving the contrast image quality and the clinical value of UCPWI.

19 citations

Journal ArticleDOI
TL;DR: Radiomics algorithm based on ultrasound ORF data combined with SAP technology can effectively predict MVI, which has potential clinical application value for non-invasively preoperative prediction of MVI in HCC patients.
Abstract: Background: To evaluate the accuracy of radiomics algorithm based on original radio frequency (ORF) signals for prospective prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) lesions. Methods: In this prospective study, we enrolled 42 inpatients diagnosed with HCC from January 2018 to December 2018. All HCC lesions were proved by surgical resection and histopathology results, including 21 lesions with MVI. Ultrasound ORF data and grayscale ultrasound images of HCC lesions were collected before operation for further radiomics analysis. Three ultrasound feature maps were calculated using signal analysis and processing (SAP) technology in first feature extraction. The diagnostic accuracy of model based on ORF signals was compared with the model based on grayscale ultrasound images. Results: A total of 1,050 radiomics features were extracted from ORF signals of each HCC lesion. The performance of MVI prediction model based on ORF was better than those based on grayscale ultrasound images. The best area under curve, accuracy, sensitivity, and specificity of ultrasound radiomics in prediction of MVI were 95.01, 92.86, 85.71, and 100%, respectively. Conclusions: Radiomics algorithm based on ultrasound ORF data combined with SAP technology can effectively predict MVI, which has potential clinical application value for non-invasively preoperative prediction of MVI in HCC patients.

16 citations

Journal ArticleDOI
Yijie Qiu1, Daohui Yang1, Qi Zhang1, Kailing Chen1, Yi Dong1, Wen-Ping Wang1 
TL;DR: V Flow measurement is a simple, rapid and feasible imaging method for the WSS assessment of CCA in healthy volunteers, which will probably be an important tool for assessing CCA function.
Abstract: OBJECTIVE To evaluate the feasibility of vector flow imaging technique (V Flow) in measurement of wall shear stress (WSS) of common carotid arteries (CCA) in healthy adults and to provide the normal WSS values assessed by V Flow. METHODS & MATERIALS This prospective study was approved by the Ethics Committee of our University. Eighty healthy adult volunteers were included (mean age 43.3 y, 47 females, 33 males). The volunteers were classified into three groups according to their age: group I (age 20 - 39 y), group II (age 40 - 59 y) and group III (age 60 - 80 y). Mindray Resona 8 ultrasound machine and a linear array transducer (3-9 MHz) was used, equipped with the updated V Flow function. Common carotid arteries of both sides were evaluated in three segments (initial segment, middle segment and near bifurcation segment). The WSS values of CCA were measured by two independent radiologists. The intraclass correlation coefficient (ICC) of observer reliability in WSS measurement was calculated. Inter-observer reproducibility was also evaluated with the 95% Bland-Altman limits of agreement (LOA). RESULTS V Flow measurements were performed successfully in 79 volunteers (98.8 %, 79/80). The mean value of WSS in right CCA was (0.66±0.24) Pa, in left CCA was (0.66±0.18) Pa (P > 0.05). Mean WSS value had a moderately negative correlation with age group (P < 0.05). The mean WSS value of group I(mean±SD, 0.75±0.25 Pa) is larger than group II (mean±SD, 0.62±0.13 Pa) and group III (mean±SD, 0.49±0.11 Pa) (P < 0.05). The ICC of observer reliability of group I, II and III was 0.96 (95% confidence interval (95% CI) 0.92-0.98), 0.94 (95% CI 0.88-0.97), 0.93 (95% CI 0.76-0.98) respectively. The Bland-Altman plots showed that the 95% LOA were -0.17-0.12 (Pa) for group I, -0.09-0.13 (Pa) for group II and -0.08-0.10 (Pa) for group III. CONCLUSION V Flow measurement is a simple, rapid and feasible imaging method for the WSS assessment of CCA in healthy volunteers, which will probably be an important tool for assessing CCA function.

15 citations

Journal ArticleDOI
TL;DR: The GAD is superior to other methods in terms of noise reduction and detail preservation and to enhance GAD's adaptability, parameters controlling diffusion are determined from a fully formed speckle region that is automatically detected.
Abstract: In ultrasound (US), optical coherence tomography, synthetic aperture radar, and other coherent imaging systems, images are corrupted by multiplicative speckle noise that obscures image interpretation. An anisotropic diffusion (AD) method based on the Gabor transform, named Gabor-based anisotropic diffusion (GAD), is presented to suppress speckle in medical ultrasonography. First, an edge detector using the Gabor transform is proposed to capture directionality of tissue edges and discriminate edges from noise. Then the edge detector is embedded into the partial differential equation of AD to guide the diffusion process and iteratively denoise images. To enhance GAD's adaptability, parameters controlling diffusion are determined from a fully formed speckle region that is automatically detected. We evaluate the GAD on synthetic US images simulated with three models and clinical images acquired in vivo. Compared with seven existing speckle reduction methods, the GAD is superior to other methods in terms of noise reduction and detail preservation.

15 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity.

2,933 citations

Journal ArticleDOI
07 Apr 2020-BMJ
TL;DR: Proposed models for covid-19 are poorly reported, at high risk of bias, and their reported performance is probably optimistic, according to a review of published and preprint reports.
Abstract: Objective To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. Design Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. Data sources PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. Study selection Studies that developed or validated a multivariable covid-19 related prediction model. Data extraction At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). Results 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. Conclusion Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. Systematic review registration Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. Readers’ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity.

2,183 citations