scispace - formally typeset
Search or ask a question
Author

Qian Chen

Bio: Qian Chen is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Internal transcribed spacer & Phylogenetic tree. The author has an hindex of 1, co-authored 1 publications receiving 8 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Phylogenetic analysis based on the multi-locus sequences of the internal transcribed spacer regions 1 and 2 and 5 confirmed the distinction of these species in Paraboeremia.
Abstract: Paraboeremia was recently introduced for a distinct lineage in the family Didymellaceae. Currently, three species are included, i.e. P. adianticola, P. putaminum and P. selaginellae, all of which are plant pathogens. Paraboeremia is morphologically similar to Phoma but phylogenetically distinct. In this paper, three new species, i.e. Paraboeremia camelliae isolated from Camellia sp., P. litseae from Litsea sp., and P. oligotrophica from cave limestone, are described, illustrated and compared with closely related taxa. Phylogenetic analysis based on the multi-locus sequences of the internal transcribed spacer regions 1 and 2 and 5.8S nuclear ribosomal RNA gene (ITS), partial large subunit 28S nrDNA region (LSU), partial β-tubulin (TUB2) gene and RNA polymerase II (RPB2) gene regions confirmed the distinction of these species in Paraboeremia. These three new species were discovered from habitats and hosts that are previously unknown from this genus.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Rpb2 was revealed as the most effective locus for the identification of Didymellaceae at species level, and is proposed as a secondary DNA marker for the family in a robust, multi-locus reference phylogenetic tree of Didylellaceae.

60 citations

Journal ArticleDOI
TL;DR: It is demonstrated that Karst caves encompass a high fungal diversity, including a number of previously unknown species, including one new genus of Cordycipitaceae, Gamszarea, and five new combinations are established.
Abstract: Karst caves are characterized by darkness, low temperature, high humidity, and oligotrophic organisms due to its relatively closed and strongly zonal environments. Up to now, 1626 species in 644 genera of fungi have been reported from caves and mines worldwide. In this study, we investigated the culturable mycobiota in karst caves in southwest China. In total, 251 samples from thirteen caves were collected and 2344 fungal strains were isolated using dilution plate method. Preliminary ITS analyses showed that these strains belonged to 610 species in 253 genera. Among these species, 88.0% belonged to Ascomycota, 8.0% Basidiomycota, 1.9% Mortierellomycota, 1.9% Mucoromycota, and 0.2% Glomeromycota. The majority of these species have been previously known from other environments, and some of them are known as mycorrhizal or pathogenic fungi. About 52.8% of these species were discovered for the first time in karst caves. Based on morphological and phylogenetic distinctions, 33 new species were identified and described in this paper. Meanwhile, one new genus of Cordycipitaceae, Gamszarea, and five new combinations are established. This work further demonstrated that Karst caves encompass a high fungal diversity, including a number of previously unknown species. Taxonomic novelties: New genus: Gamszarea Z.F. Zhang & L. Cai; Novel species: Amphichorda cavernicola, Aspergillus limoniformis, Aspergillus phialiformis, Aspergillus phialosimplex, Auxarthron chinense, Auxarthron guangxiense, Auxarthronopsis globiasca, Auxarthronopsis pedicellaris, Auxarthronopsis pulverea, Auxarthronopsis stercicola, Chrysosporium pallidum, Gamszarea humicola, Gamszarea lunata, Gamszarea microspora, Gymnoascus flavus, Jattaea reniformis, Lecanicillium magnisporum, Microascus collaris, Microascus levis, Microascus sparsimycelialis, Microascus superficialis, Microascus trigonus, Nigrospora globosa, Paracremonium apiculatum, Paracremonium ellipsoideum, Paraphaeosphaeria hydei, Pseudoscopulariopsis asperispora, Setophaeosphaeria microspora, Simplicillium album, Simplicillium humicola, Wardomycopsis dolichi, Wardomycopsis ellipsoconidiophora, Wardomycopsis fusca; New combinations: Gamszarea indonesiaca (Kurihara & Sukarno) Z.F. Zhang & L. Cai, Gamszarea kalimantanensis (Kurihara & Sukarno) Z.F. Zhang & L. Cai, Gamszarea restricta (Hubka, Kubatova, Nonaka, Cmokova & Řehulka) Z.F. Zhang & L. Cai, Gamszarea testudinea (Hubka, Kubatova, Nonaka, Cmokova & Řehulka) Z.F. Zhang & L. Cai, Gamszarea wallacei (H.C. Evans) Z.F. Zhang & L. Cai.

53 citations

Journal ArticleDOI
TL;DR: Two DSE strains could effectively colonize plant roots and formed a strain-dependent symbiosis with liquorice and demonstrate for the first time, two DSE fungi in the liquorice roots that have potential use as promoter for the cultivation of medicinal plant.
Abstract: Dark septate endophytic (DSE) fungi is a diverse group of Ascomycetes fungi that colonize the plants roots, and may facilitate plant growth and fitness, however, their ecological roles need further clarification. This study aimed to evaluate the growth promoting effects of DSE fungi in a medicinal plant, liquorice (Glycyrrhiza uralensis), under additional organic residues. First, we isolated, identified and characterized, two DSE fungal species (Acrocalymma vagum and Paraboeremia putaminum) harboring inside the roots of liquorice growing in arid areas of China. Second, we examined the performance and rhizosphere soil parameters of liquorice plants inoculated with these fungi under additional sterilized organic residues and unsterilized organic residue (containing Trichoderma viride population) in a growth chamber. The results showed that two DSE strains could effectively colonize plant roots and formed a strain-dependent symbiosis with liquorice. DSE inoculation alone increased the plant biomass, and glycyrrhizic acid and glycyrrhizin content. It also improved the root system and N and P absorption by plants, consequently depleting these macronutrients in the soil. Residues alone increased soil organic matter, available phosphorus (P), and available nitrogen (N) content, and plant biomass, N, P, glycyrrhizic acid, and glycyrrhizin content. Mantel test and structural equation model (SEM) analysis demonstrated that DSE associated with residues significantly positively influenced soil organic matter, available P and available N, and plant biomass, glycyrrhizin, N, P, and root surface area. Variation in plant growth and glycyrrhizic acid and glycyrrhizin accumulation can be attributed to the effects of DSE inoculation. DSE associated with residues exhibited a general synergistic effect on the growth and accumulation of glycyrrhizic acid and glycyrrhizin of liquorice. We demonstrate for the first time, two DSE fungi in the liquorice roots that have potential use as promoter for the cultivation of medicinal plant.

34 citations

Journal ArticleDOI
24 Aug 2017-Mycology
TL;DR: This study significantly improved the understanding on fungi being able to grow on carbon free medium, with the known species increased from 18 to 99, and three new species being described and named.
Abstract: Oligotrophs are microorganisms that can grow in environments where concentrations of nutrients are low or even absent. Caves are typical oligotrophic environments distinctly characterised by consta...

20 citations

Journal ArticleDOI
10 Mar 2020
TL;DR: From the results of this study, soil was revealed to be a rich substrate for members of Didymellaceae, several of which were previously known only from diseased or apparently healthy plant hosts.
Abstract: Fungal communities play a crucial role in maintaining the health of managed and natural soil environments, which directly or indirectly affect the properties of plants and other soil inhabitants. As part of a Citizen Science Project initiated by the Westerdijk Fungal Biodiversity Institute and the Utrecht University Museum, which aimed to describe novel fungal species from Dutch garden soil, the diversity of Didymellaceae, which is one of the largest families in the Dothideomycetes was investigated. A preliminary analysis of the ITS and LSU sequences from the obtained isolates allowed the identification of 148 strains belonging to the family. Based on a multi-locus phylogeny of a combined ITS, LSU, rpb2 and tub2 alignment, and morphological characteristics, 20 different species were identified in nine genera, namely Ascochyta, Calophoma, Didymella, Juxtiphoma, Nothophoma, Paraboeremia, Phomatodes, Stagonosporopsis, and Xenodidymella. Several isolates confirmed to be ubiquitous plant pathogens or endophytes were for the first time identified from soil, such as Ascochyta syringae, Calophoma clematidis-rectae, and Paraboeremia litseae. Furthermore, one new genus and 12 novel species were described from soil: Ascochyta benningiorum sp. nov., Didymella degraaffiae sp. nov., D. kooimaniorum sp. nov., Juxtiphoma kolkmaniorum sp. nov., Nothophoma brennandiae sp. nov., Paraboeremia rekkeri sp. nov., P. truiniorum sp. nov., Stagonosporopsis stuijvenbergii sp. nov., S. weymaniae sp. nov., Vandijckomycella joseae gen. nov. et sp. nov., V. snoekiae sp. nov., and Xenodidymella weymaniae sp. nov. From the results of this study, soil was revealed to be a rich substrate for members of Didymellaceae, several of which were previously known only from diseased or apparently healthy plant hosts.

17 citations