scispace - formally typeset
Search or ask a question
Author

Qian Feng

Bio: Qian Feng is an academic researcher from Rockefeller University. The author has contributed to research in topics: Viral pathogenesis & Virus. The author has an hindex of 1, co-authored 1 publications receiving 391 citations.

Papers
More filters
Journal ArticleDOI
09 Jun 2011-Nature
TL;DR: It is demonstrated that HCV can be blocked by passive immunization, as well as showing that a recombinant vaccinia virus vector induces humoral immunity and confers partial protection against heterologous challenge.
Abstract: Hepatitis C virus (HCV) remains a major medical problem. Antiviral treatment is only partially effective and a vaccine does not exist. Development of more effective therapies has been hampered by the lack of a suitable small animal model. Although xenotransplantation of immunodeficient mice with human hepatocytes has shown promise, these models are subject to important challenges. Building on the previous observation that CD81 and occludin comprise the minimal human factors required to render mouse cells permissive to HCV entry in vitro, we attempted murine humanization via a genetic approach. Here we show that expression of two human genes is sufficient to allow HCV infection of fully immunocompetent inbred mice. We establish a precedent for applying mouse genetics to dissect viral entry and validate the role of scavenger receptor type B class I for HCV uptake. We demonstrate that HCV can be blocked by passive immunization, as well as showing that a recombinant vaccinia virus vector induces humoral immunity and confers partial protection against heterologous challenge. This system recapitulates a portion of the HCV life cycle in an immunocompetent rodent for the first time, opening opportunities for studying viral pathogenesis and immunity and comprising an effective platform for testing HCV entry inhibitors in vivo.

405 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review what is known about the pathogens that emerge, the hosts that they originate in, and the factors that drive their emergence and discuss challenges to their control and new efforts to predict pandemics.

751 citations

Journal ArticleDOI
TL;DR: Ongoing and future trials will determine the best antiviral combinations and whether the current seemingly rich pipeline is sufficient for successful treatment of all patients in the face of major challenges, such as HCV diversity, viral resistance, the influence of host genetics, advanced liver disease and other co-morbidities.
Abstract: More than two decades of intense research has provided a detailed understanding of hepatitis C virus (HCV), which chronically infects 2% of the world's population. This effort has paved the way for the development of antiviral compounds to spare patients from life-threatening liver disease. An exciting new era in HCV therapy dawned with the recent approval of two viral protease inhibitors, used in combination with pegylated interferon-α and ribavirin; however, this is just the beginning. Multiple classes of antivirals with distinct targets promise highly efficient combinations, and interferon-free regimens with short treatment duration and fewer side effects are the future of HCV therapy. Ongoing and future trials will determine the best antiviral combinations and whether the current seemingly rich pipeline is sufficient for successful treatment of all patients in the face of major challenges, such as HCV diversity, viral resistance, the influence of host genetics, advanced liver disease and other co-morbidities.

519 citations

Journal ArticleDOI
TL;DR: In the past five years, new approaches have been developed to interrogate human memory B cells and plasma cells with high efficiency and to isolate several broadly neutralizing antiviral antibodies against highly variable pathogens such as HIV-1 and influenza virus.
Abstract: A fascinating aspect of viral evolution relates to the ability of viruses to escape the adaptive immune response. The widely held view has been that the great variability of viral glycoproteins would be an absolute obstacle to the development of antibody-based therapies or vaccines that could confer broad and long-lasting protection. In the past five years, new approaches have been developed to interrogate human memory B cells and plasma cells with high efficiency and to isolate several broadly neutralizing antiviral antibodies against highly variable pathogens such as HIV-1 and influenza virus. These antibodies not only provide new tools for prophylaxis and therapy for viral diseases but also identify conserved epitopes that may be used to design new vaccines capable of conferring broader protection.

451 citations

Journal ArticleDOI
TL;DR: The cell imposes multiple barriers to virus entry, but viruses exploit fundamental cellular processes to gain entry to cells and deliver their genetic cargo.
Abstract: The cell imposes multiple barriers to virus entry. However, viruses exploit fundamental cellular processes to gain entry to cells and deliver their genetic cargo. Virus entry pathways are largely defined by the interactions between virus particles and their receptors at the cell surface. These interactions determine the mechanisms of virus attachment, uptake, intracellular trafficking, and, ultimately, penetration to the cytosol. Elucidating the complex interplay between viruses and their receptors is necessary for a full understanding of how these remarkable agents invade their cellular hosts.

419 citations

Journal ArticleDOI
TL;DR: The development of a small-animal model for MERS, in which mice were sensitized to MERS-CoV infection by prior transduction with adenoviral vectors expressing the human host-cell receptor dipeptidyl peptidase 4, is described.
Abstract: In this era of continued emergence of zoonotic virus infections, the rapid development of rodent models represents a critical barrier to public health preparedness, including the testing of antivirus therapy and vaccines. The Middle East respiratory syndrome coronavirus (MERS-CoV) was recently identified as the causative agent of a severe pneumonia. Given the ability of coronavirus to rapidly adapt to new hosts, a major public health concern is that MERS-CoV will further adapt to replication in humans, triggering a pandemic. No small-animal model for this infection is currently available, but studies suggest that virus entry factors can confer virus susceptibility. Here, we show that mice were sensitized to MERS-CoV infection by prior transduction with adenoviral vectors expressing the human host-cell receptor dipeptidyl peptidase 4. Mice developed a pneumonia characterized by extensive inflammatory-cell infiltration with virus clearance occurring 6–8 d after infection. Clinical disease and histopathological changes were more severe in the absence of type-I IFN signaling whereas the T-cell response was required for virus clearance. Using these mice, we demonstrated the efficacy of a therapeutic intervention (poly I:C) and a potential vaccine [Venezuelan equine encephalitis replicon particles expressing MERS-CoV spike protein]. We also found little protective cross-reactivity between MERS-CoV and the severe acute respiratory syndrome-CoV. Our results demonstrate that this system will be useful for MERS-CoV studies and for the rapid development of relevant animal models for emerging respiratory viral infections.

405 citations