scispace - formally typeset
Search or ask a question
Author

Qian Liu

Bio: Qian Liu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Chemistry. The author has an hindex of 90, co-authored 610 publications receiving 33341 citations. Previous affiliations of Qian Liu include Hebei Medical University & Shanghai Jiao Tong University.


Papers
More filters
Journal ArticleDOI
TL;DR: The topotactic fabrication of self-supported nanoporous cobalt phosphide nanowire arrays on carbon cloth via low-temperature phosphidation of the corresponding Co(OH)F/CC precursor offers excellent catalytic performance and durability under neutral and basic conditions.
Abstract: In this Communication, we report the topotactic fabrication of self-supported nanoporous cobalt phosphide nanowire arrays on carbon cloth (CoP/CC) via low-temperature phosphidation of the corresponding Co(OH)F/CC precursor. The CoP/CC, as a robust integrated 3D hydrogen-evolving cathode, shows a low onset overpotential of 38 mV and a small Tafel slope of 51 mV dec–1, and it maintains its catalytic activity for at least 80 000 s in acidic media. It needs overpotentials (η) of 67, 100, and 204 mV to attain current densities of 10, 20, and 100 mA cm–2, respectively. Additionally, this electrode offers excellent catalytic performance and durability under neutral and basic conditions.

2,063 citations

Journal ArticleDOI
Jing Zhou1, Qian Liu1, Wei Feng1, Yun Sun1, Fuyou Li1 

1,679 citations

Journal ArticleDOI
15 Nov 2011-ACS Nano
TL;DR: Under the irradiation of 980 nm laser with the conservative and safe power density over a short period, cancer cells in vivo can be efficiently killed by the photothermal effects of the Cu(9)S(5) NCs.
Abstract: Photothermal ablation (PTA) therapy has a great potential to revolutionize conventional therapeutic approaches for cancers, but it has been limited by difficulties in obtaining biocompatible photothermal agents that have low cost, small size (<100 nm), and high photothermal conversion efficiency. Herein, we have developed hydrophilic plate-like Cu(9)S(5) nanocrystals (NCs, a mean size of ∼70 nm × 13 nm) as a new photothermal agent, which are synthesized by combining a thermal decomposition and ligand exchange route. The aqueous dispersion of as-synthesized Cu(9)S(5) NCs exhibits an enhanced absorption (e.g., ∼1.2 × 10(9) M(-1) cm(-1) at 980 nm) with the increase of wavelength in near-infrared (NIR) region, which should be attributed to localized surface plasmon resonances (SPR) arising from p-type carriers. The exposure of the aqueous dispersion of Cu(9)S(5) NCs (40 ppm) to 980 nm laser with a power density of 0.51 W/cm(2) can elevate its temperature by 15.1 °C in 7 min; a 980 nm laser heat conversion efficiency reaches as high as 25.7%, which is higher than that of the as-synthesized Au nanorods (23.7% from 980 nm laser) and the recently reported Cu(2-x)Se NCs (22% from 808 nm laser). Importantly, under the irradiation of 980 nm laser with the conservative and safe power density over a short period (∼10 min), cancer cells in vivo can be efficiently killed by the photothermal effects of the Cu(9)S(5) NCs. The present finding demonstrates the promising application of the Cu(9)S(5) NCs as an ideal photothermal agent in the PTA of in vivo tumor tissues.

1,064 citations

Journal ArticleDOI
TL;DR: An FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its β-FeOOH NA/ Ti precursor through a low-temperature phosphidation reaction, showing exceptionally high catalytic activity and good durability when applied as self-supported 3D hydrogen evolution cathode.
Abstract: Iron is the cheapest and one of the most abundant transition metals. Natural (FeFe)-hydrogenases exhibit remarkably high activity in hydrogen evolution, but they suffer from high oxygen sensitivity and difficulty in scale-up. Herein, an FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its b-FeOOH NA/Ti precursor through a low- temperature phosphidation reaction. When applied as self- supported 3D hydrogen evolution cathode, the FeP NA/Ti electrode shows exceptionally high catalytic activity and good durability, and it only requires overpotentials of 55 and 127 mV to afford current densities of 10 and 100 mA cm 2 , respectively. The excellent electrocatalytic performance is promising for applications as non-noble-metal HER catalyst with a high performance-price ratio in electrochemical water splitting for large-scale hydrogen fuel production. Hydrogen as a promising clean chemical fuel is an ideal energy carrier for sustainable energy applications. (1) Electro- chemical reduction of water for hydrogen production is an important component of several emerging clean-energy technologies, but an efficient electrocatalyst for the hydrogen evolution reaction (HER) is required to afford high current at low overpotential. (2) Although Pt-based catalysts show high catalytic performance, they suffer from high costs and the scarcity of Pt. (3) Water electrolysis based on proton exchange membrane (PEM) technology and many solar water splitting devices operate under strongly acidic conditions, (4) it is thus highly attractive to develop acid-stable HER catalysts made from earth-abundant elements. Catalysts based on Mo, W, and Fe-group elements have received great attention, includ-

839 citations

Journal ArticleDOI
TL;DR: This is the topotactic fabrication of self-supported Cu3 P nanowire arrays on commercial porous copper foam from its Cu(OH)2 NW/CF precursor by a low-temperature phosphidation reaction.
Abstract: Searching for inexpensive hydrogen evolution reaction (HER) electrocatalysts with high activity has attracted considerable research interest in the past years. Reported herein is the topotactic fabrication of self-supported Cu3P nanowire arrays on commercial porous copper foam (Cu3P NW/CF) from its Cu(OH)(2) NW/CF precursor by a low-temperature phosphidation reaction. Remarkably, as an integrated three-dimensional hydrogen-evolving cathode operating in acidic electrolytes, Cu3P NW/CF maintains its activity for at least 25 hours and exhibits an onset overpotential of 62 mV, a Tafel slope of 67 mVdec(-1), and a Faradaic efficiency close to 100%. Catalytic current density can approach 10 mAcm(-2) at an overpotential of 143 mV.

806 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described in this article, where the rule of 5 is used to predict poor absorption or permeability when there are more than 5 H-bond donors, 10 Hbond acceptors, and the calculated Log P (CLogP) is greater than 5 (or MlogP > 415).

14,026 citations

Journal ArticleDOI
13 Jan 2017-Science
TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Abstract: BACKGROUND With a rising global population, increasing energy demands, and impending climate change, major concerns have been raised over the security of our energy future. Developing sustainable, fossil-free pathways to produce fuels and chemicals of global importance could play a major role in reducing carbon dioxide emissions while providing the feedstocks needed to make the products we use on a daily basis. One prospective goal is to develop electrochemical conversion processes that can convert molecules in the atmosphere (e.g., water, carbon dioxide, and nitrogen) into higher-value products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia) by coupling to renewable energy. Electrocatalysts play a key role in these energy conversion technologies because they increase the rate, efficiency, and selectivity of the chemical transformations involved. Today’s electrocatalysts, however, are inadequate. The grand challenge is to develop advanced electrocatalysts with the enhanced performance needed to enable widespread penetration of clean energy technologies. ADVANCES Over the past decade, substantial progress has been made in understanding several key electrochemical transformations, particularly those that involve water, hydrogen, and oxygen. The combination of theoretical and experimental studies working in concert has proven to be a successful strategy in this respect, yielding a framework to understand catalytic trends that can ultimately provide rational guidance toward the development of improved catalysts. Catalyst design strategies that aim to increase the number of active sites and/or increase the intrinsic activity of each active site have been successfully developed. The field of hydrogen evolution, for example, has seen important breakthroughs over the years in the development of highly active non–precious metal catalysts in acid. Notable advancements have also been made in the design of oxygen reduction and evolution catalysts, although there remains substantial room for improvement. The combination of theory and experiment elucidates the remaining challenges in developing further improved catalysts, often involving scaling relations among reactive intermediates. This understanding serves as an initial platform to design strategies to circumvent technical obstacles, opening up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions. OUTLOOK A systematic framework of combining theory and experiment in electrocatalysis helps to uncover broader governing principles that can be used to understand a wide variety of electrochemical transformations. These principles can be applied to other emerging and promising clean energy reactions, including hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, among others. Although current paradigms for catalyst development have been helpful to date, a number of challenges need to be successfully addressed in order to achieve major breakthroughs. One important frontier, for example, is the development of both experimental and computational methods that can rapidly elucidate reaction mechanisms on broad classes of materials and in a wide range of operating conditions (e.g., pH, solvent, electrolyte). Such efforts would build on current frameworks for understanding catalysis to provide the deeper insights needed to fine-tune catalyst properties in an optimal manner. The long-term goal is to continue improving the activity and selectivity of these catalysts in order to realize the prospects of using renewable energy to provide the fuels and chemicals that we need for a sustainable energy future.

7,062 citations

Journal ArticleDOI
TL;DR: The new SwissADME web tool is presented that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar are presented.
Abstract: To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.

6,135 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations