scispace - formally typeset
Search or ask a question
Author

Qian Liu

Bio: Qian Liu is an academic researcher from University of Electronic Science and Technology of China. The author has contributed to research in topics: Electrocatalyst & Reversible hydrogen electrode. The author has an hindex of 31, co-authored 60 publications receiving 2872 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that Fe, one of the cheapest and most abundant metals on the earth, acts as an effective dopant to greatly improve the NRR performances of TiO 2 nanoparticle for ambient N 2 -to-NH 3 conversion.
Abstract: Titanium-based catalysts are needed to achieve electrocatalytic N2 reduction to NH3 with a large NH3 yield and a high Faradaic efficiency (FE). One of the cheapest and most abundant metals on earth, iron, is an effective dopant for greatly improving the nitrogen reduction reaction (NRR) performance of TiO2 nanoparticles in ambient N2 -to-NH3 conversion. In 0.5 m LiClO4 , Fe-doped TiO2 catalyst attains a high FE of 25.6 % and a large NH3 yield of 25.47 μg h-1 mgcat-1 at -0.40 V versus a reversible hydrogen electrode. This performance compares favorably to those of all previously reported titanium- and iron-based NRR electrocatalysts in aqueous media. The catalytic mechanism is further probed with theoretical calculations.

334 citations

Journal ArticleDOI
TL;DR: It is reported that the Mo2C nanorod serves as an excellent NRR electrocatalyst for artificial N2 fixation to NH3 with strong durability and acceptable selectivity under ambient conditions.
Abstract: The synthesis of NH3 is mainly dominated by the traditional energy-consuming Haber–Bosch process with a mass of CO2 emission. Electrochemical conversion of N2 to NH3 emerges as a carbon-free process for the sustainable artificial N2 reduction reaction (NRR), but requires an efficient and stable electrocatalyst. Here, we report that the Mo2C nanorod serves as an excellent NRR electrocatalyst for artificial N2 fixation to NH3 with strong durability and acceptable selectivity under ambient conditions. Such a catalyst shows a high Faradaic efficiency of 8.13% and NH3 yield of 95.1 μg h–1 mg–1cat at −0.3 V in 0.1 M HCl, surpassing the majority of reported electrochemical conversion NRR catalysts. Density functional theory calculation was carried out to gain further insight into the catalytic mechanism involved.

271 citations

Journal ArticleDOI
TL;DR: It is demonstrated that mixed-valent Cu acts as an effective dopant to modulate the oxygen vacancy (VO ) concentration and Ti3+ formation, which markedly improves the electrocatalytic NRR performance.
Abstract: The ambient electrocatalytic N2 reduction reaction (NRR) enabled by TiO2 has attracted extensive recent attention Previous studies suggest the formation of Ti3+ in TiO2 can significantly improve the NRR activity, but it still remains unclear what kinds of Ti3+ are effective Herein, it is demonstrated that mixed-valent Cu acts as an effective dopant to modulate the oxygen vacancy (VO ) concentration and Ti3+ formation, which markedly improves the electrocatalytic NRR performance In 05 m LiClO4 , this electrocatalyst attains a high Faradic efficiency of 2199% and a large NH3 yield of 2131 µg h-1 mgcat -1 at -055 V vs reversible hydrogen electrode, which even surpasses most reported Ti-based NRR electrocatalysts Using density function theory calculations, it is evidenced that mixed-valent Cu ions modulate the TiO2 (101) surface with multiple oxygen vacancies, which is beneficial for generating different Ti3+ 3d1 defect states localized below the Fermi energy N2 activation and adsorption are effectively strengthened when Ti3+ 3d1 defect states present the splitting of eg and t2g orbitals, which can be modulated by its coordination structure The synergistic roles of the three ion pairs formed by the VO defect, including Cu1+ -Ti4+ , Ti3+ -Ti4+ and Ti3+ -Ti3+ , are together responsible for the enhanced NRR performance

245 citations

Journal ArticleDOI
01 Mar 2019-Small
TL;DR: This review provides a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions and concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrodes.
Abstract: Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions.

231 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the recent advances in the development of electrocatalysts for the N2 reduction reaction (NRR). Strategies to boost the NRR performances are also discussed.
Abstract: Electrochemical N2 reduction has emerged as an environmentally benign alternative to the Haber–Bosch process for sustainable NH3 synthesis under ambient reaction conditions, and considerable recent attention has focused on electrocatalytic NH3 synthesis from N2 and H2O in aqueous media. In this Minireview, we summarize the recent advances in the development of electrocatalysts for the N2 reduction reaction (NRR). Strategies to boost the NRR performances are also discussed. Perspectives for further research directions are provided finally.

214 citations


Cited by
More filters
Posted Content
TL;DR: The two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
Abstract: We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Mn3O4 nanoparticles grown selectively on RGO sheets over free particle growth in solution allowed for the electrically insulating Mn3O4 nanoparticles wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ~900mAh/g near its theoretical capacity with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn3O4 nanoparticles grown atop. The Mn3O4/RGO hybrid could be a promising candidate material for high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for design and synthesis of battery electrodes based on highly insulating materials.

1,587 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive account of theoretical and experimental studies on electrochemical nitrogen fixation with a focus on the low selectivity for reduction of N2 to ammonia versus protons to H2.
Abstract: Global ammonia production reached 175 million metric tons in 2016, 90% of which is produced from high purity N2 and H2 gases at high temperatures and pressures via the Haber-Bosch process. Reliance on natural gas for H2 production results in large energy consumption and CO2 emissions. Concerns of human-induced climate change are spurring an international scientific effort to explore new approaches to ammonia production and reduce its carbon footprint. Electrocatalytic N2 reduction to ammonia is an attractive alternative that can potentially enable ammonia synthesis under milder conditions in small-scale, distributed, and on-site electrolysis cells powered by renewable electricity generated from solar or wind sources. This review provides a comprehensive account of theoretical and experimental studies on electrochemical nitrogen fixation with a focus on the low selectivity for reduction of N2 to ammonia versus protons to H2. A detailed introduction to ammonia detection methods and the execution of control experiments is given as they are crucial to the accurate reporting of experimental findings. The main part of this review focuses on theoretical and experimental progress that has been achieved under a range of conditions. Finally, comments on current challenges and potential opportunities in this field are provided.

540 citations

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art progress on MXene theory, materials synthesis techniques, morphology modifications, opto-electro-magnetic properties, and their applications are comprehensively discussed.

502 citations

Journal ArticleDOI
TL;DR: This review aims to provide a comprehensive summary on the recent development of single-atom electrocatalysts for various energy-conversion reactions using state-of-the-art microscopic and spectroscopic techniques.
Abstract: Electrocatalysts with single metal atoms as active sites have received increasing attention owing to their high atomic utilization efficiency and exotic catalytic activity and selectivity. This review aims to provide a comprehensive summary on the recent development of such single-atom electrocatalysts (SAECs) for various energy-conversion reactions. The discussion starts with an introduction of the different types of SAECs, followed by an overview of the synthetic methodologies to control the atomic dispersion of metal sites and atomically resolved characterization using state-of-the-art microscopic and spectroscopic techniques. In recognition of the extensive applications of SAECs, the electrocatalytic studies are dissected in terms of various important electrochemical reactions, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Examples of SAECs are deliberated in each case in terms of their catalytic performance, structure-property relationships, and catalytic enhancement mechanisms. A perspective is provided at the end of each section about remaining challenges and opportunities for the development of SAECs for the targeted reaction.

443 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a rather comprehensive review of the recent research progress, in the view of associated value-added products upon selective electrocatalytic CO2 conversion.
Abstract: The continuously increasing CO2 released from human activities poses a great threat to human survival by fluctuating global climate and disturbing carbon balance among the four reservoirs of the biosphere, earth, air, and water. Converting CO2 to value-added feedstocks via electrocatalysis of the CO2 reduction reaction (CO2RR) has been regarded as one of the most attractive routes to re-balance the carbon cycle, thanks to its multiple advantages of mild operating conditions, easy handling, tunable products and the potential of synergy with the rapidly increasing renewable energy (i.e., solar, wind). Instead of focusing on a special topic of electrocatalysts for the CO2RR that have been extensively reviewed elsewhere, we herein present a rather comprehensive review of the recent research progress, in the view of associated value-added products upon selective electrocatalytic CO2 conversion. We initially provide an overview of the history and the fundamental science regarding the electrocatalytic CO2RR, with a special introduction to the design, preparation, and performance evaluation of electrocatalysts, the factors influencing the CO2RR, and the associated theoretical calculations. Emphasis will then be given to the emerging trends of selective electrocatalytic conversion of CO2 into a variety of value-added products. The structure-performance relationship and mechanism will also be discussed and investigated. The outlooks for CO2 electrocatalysis, including the challenges and opportunities in the development of new electrocatalysts, electrolyzers, the recently rising operando fundamental studies, and the feasibility of industrial applications are finally summarized.

387 citations