scispace - formally typeset
Search or ask a question
Author

Qiang Huang

Bio: Qiang Huang is an academic researcher from Beijing Institute of Technology. The author has contributed to research in topics: Humanoid robot & Robot. The author has an hindex of 28, co-authored 585 publications receiving 4723 citations. Previous affiliations of Qiang Huang include Carnegie Mellon University & Chinese Ministry of Education.


Papers
More filters
Journal ArticleDOI
01 Jun 2001
TL;DR: This work proposes a method for formulating the problem of the smooth hip motion with the largest stability margin using only two parameters, and derive the hip trajectory by iterative computation.
Abstract: Biped robots have better mobility than conventional wheeled robots, but they tend to tip over easily. To be able to walk stably in various environments, such as on rough terrain, up and down slopes, or in regions containing obstacles, it is necessary for the robot to adapt to the ground conditions with a foot motion, and maintain its stability with a torso motion. When the ground conditions and stability constraint are satisfied, it is desirable to select a walking pattern that requires small torque and velocity of the joint actuators. We first formulate the constraints of the foot motion parameters. By varying the values of the constraint parameters, we can produce different types of foot motion to adapt to ground conditions. We then propose a method for formulating the problem of the smooth hip motion with the largest stability margin using only two parameters, and derive the hip trajectory by iterative computation. Finally, the correlation between the actuator specifications and the walking patterns is described through simulation studies, and the effectiveness of the proposed methods is confirmed by simulation examples and experimental results.

859 citations

Journal ArticleDOI
TL;DR: An untethered soft millirobot decorated with multiple tapered soft feet architecture with excellent locomotion capability in harsh environments is demonstrated, representing an important advance in the emerging area of bio-inspired robotics.
Abstract: Developing untethered millirobots that can adapt to harsh environments with high locomotion efficiency is of interest for emerging applications in various industrial and biomedical settings. Despite recent success in exploiting soft materials to impart sophisticated functions which are not available in conventional rigid robotics, it remains challenging to achieve superior performances in both wet and dry conditions. Inspired by the flexible, soft, and elastic leg/foot structures of many living organisms, here we report an untethered soft millirobot decorated with multiple tapered soft feet architecture. Such robot design yields superior adaptivity to various harsh environments with ultrafast locomotion speed (>40 limb length/s), ultra-strong carrying capacity (>100 own weight), and excellent obstacle-crossing ability (stand up 90° and across obstacle >10 body height). Our work represents an important advance in the emerging area of bio-inspired robotics and will find a wide spectrum of applications.

345 citations

Proceedings ArticleDOI
10 May 1999
TL;DR: This work proposes a method to plan a walking pattern consisting of a foot trajectory and a hip trajectory, and generates the foot trajectory by 3rd order spline interpolation and derives the hip trajectory with high stability.
Abstract: Biped robots have better mobility than conventional wheeled robots, but they tip over easily. In order to walk stably in various environments such as rough terrain, up and down slopes, or regions containing obstacles, it is desirable to adapt to such ground conditions with a suitable foot motion, and maintain the stability of the robot by a smooth hip motion. We propose a method to plan a walking pattern consisting of a foot trajectory and a hip trajectory. First, we formulate the constraints of a foot trajectory, and generate the foot trajectory by 3rd order spline interpolation. By setting the values of constraint parameters, it is easy to produce different types of foot motion. Then, we formulate a hip trajectory using a 3rd order periodic spline function, and derive the hip trajectory with high stability. Finally, the effectiveness of the proposed method is illustrated by simulation examples.

194 citations

Journal ArticleDOI
TL;DR: A new kinematic calibration method based on the extended Kalman filter (EKF) and particle filter (PF) algorithm that can significantly improves the positioning accuracy of the robot.
Abstract: Precise positioning of a robot plays an very important role in advanced industrial applications, and this paper presents a new kinematic calibration method based on the extended Kalman filter (EKF) and particle filter (PF) algorithm that can significantly improves the positioning accuracy of the robot. Kinematic and its error models of a robot are established, and its kinematic parameters are identified by using the EKF algorithm first. But the EKF algorithm has a kind of linear truncation error and it is useful for the Gauss noise system in general, so its identified accuracy will be affected for the highly nonlinear robot kinematic system with a non-Gauss noise system. The PF algorithm can solve this with non-Gauss noise and a high nonlinear problem well, but its calibration accuracy and efficiency are affected by the prior distribution of the initial values. Therefore, this paper proposes to use the calibration value of the EKF algorithm as the prior value of the PF algorithm, and then, the PF algorithm is used further to calibrate the kinematic parameters of the robot. Enough experiments have been carried out, and the experimental results validated the viability of the proposed method with the robot positioning accuracy improved significantly.

103 citations

Journal ArticleDOI
TL;DR: A fluidic self-assembly method using cell embedded microstructures to construct vascular-like microtubes using a novel 4-layer microfluidic device, which contains fabrication, self- assembly and extraction areas inside one channel.
Abstract: Currently, research on the construction of vascular-like tubular structures is a hot area of tissue engineering, since it has potential applications in the building of artificial blood vessels. In this paper, we report a fluidic self-assembly method using cell embedded microstructures to construct vascular-like microtubes. A novel 4-layer microfluidic device was fabricated using polydimethylsiloxane (PDMS), which contains fabrication, self-assembly and extraction areas inside one channel. Cell embedded microstructures were directly fabricated using poly(ethylene glycol) diacrylate (PEGDA) in the fabrication area, namely on-chip fabrication. Self-assembly of the fabricated microstructures was performed in the assembly area which has a micro well. Assembled tubular structures (microtubes) were extracted outside the channel into culture dishes using a normally closed (NC) micro valve in the extraction area. The self-assembly mechanism was experimentally demonstrated. The performance of the NC micro valve and embedded cell concentration were both evaluated. Fibroblast (NIH/3T3) embedded vascular-like microtubes were constructed inside this reusable microfluidic device.

85 citations


Cited by
More filters
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations