scispace - formally typeset
Search or ask a question
Author

Qiang Liu

Bio: Qiang Liu is an academic researcher from Tsinghua University. The author has contributed to research in topics: Medicine & Laser. The author has an hindex of 60, co-authored 652 publications receiving 20634 citations. Previous affiliations of Qiang Liu include Northeast Petroleum University & Guangdong University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This Article contains typographical errors in Table 2 where ‘Week 2 (N = 32)’ was incorrectly given as ‘week (n’=‬2’.
Abstract: Scientific Reports 5: Article number: 10942; published online: 01 June 2015; updated: 23 February 2016 This Article contains typographical errors in Table 2 where ‘Week 2 (N = 32)’ was incorrectly given as ‘Week (N = 2)’.

2,328 citations

Journal ArticleDOI
TL;DR: This article showed that over-expression of the cDNA encoding DREB1A in transgenic plants activated the expression of many of these stress tolerance genes under normal growing conditions and resulted in improved tolerance to drought, salt loading, and freezing.
Abstract: Plant productivity is greatly affected by environmental stresses such as drought, salt loading, and freezing. We reported previously that a cis-acting promoter element, the dehydration response element (DRE), plays an important role in regulating gene expression in response to these stresses. The transcription factor DREB1A specifically interacts with the DRE and induces expression of stress tolerance genes. We show here that overexpression of the cDNA encoding DREB1A in transgenic plants activated the expression of many of these stress tolerance genes under normal growing conditions and resulted in improved tolerance to drought, salt loading, and freezing. However, use of the strong constitutive 35S cauliflower mosaic virus (CaMV) promoter to drive expression of DREB1A also resulted in severe growth retardation under normal growing conditions. In contrast, expression of DREB1A from the stress inducible rd29A promoter gave rise to minimal effects on plant growth while providing an even greater tolerance to stress conditions than did expression of the gene from the CaMV promoter.

1,968 citations

Journal ArticleDOI
TL;DR: Gel mobility shift assay using mutant DREB proteins showed that the two amino acids, valine and glutamic acid conserved in the ERF/AP2 domains, especially valine, have important roles in DNA-binding specificity.

1,589 citations

Journal ArticleDOI
TL;DR: The authors survey the steady refinement of techniques used to create optical vortices, and explore their applications, which include sophisticated optical computing processes, novel microscopy and imaging techniques, the creation of ‘optical tweezers’ to trap particles of matter, and optical machining using light to pattern structures on the nanoscale.
Abstract: Thirty years ago, Coullet et al. proposed that a special optical field exists in laser cavities bearing some analogy with the superfluid vortex. Since then, optical vortices have been widely studied, inspired by the hydrodynamics sharing similar mathematics. Akin to a fluid vortex with a central flow singularity, an optical vortex beam has a phase singularity with a certain topological charge, giving rise to a hollow intensity distribution. Such a beam with helical phase fronts and orbital angular momentum reveals a subtle connection between macroscopic physical optics and microscopic quantum optics. These amazing properties provide a new understanding of a wide range of optical and physical phenomena, including twisting photons, spin-orbital interactions, Bose-Einstein condensates, etc., while the associated technologies for manipulating optical vortices have become increasingly tunable and flexible. Hitherto, owing to these salient properties and optical manipulation technologies, tunable vortex beams have engendered tremendous advanced applications such as optical tweezers, high-order quantum entanglement, and nonlinear optics. This article reviews the recent progress in tunable vortex technologies along with their advanced applications.

1,016 citations

Journal ArticleDOI
TL;DR: This review examines the response of the magnetic resonance visible iron in tissue that produces signal changes in both magnitude and phase images that seem to correlate with brain iron content, but still have not been successfully exploited to accurately and precisely quantify brain iron.

955 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation.
Abstract: Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation. The ionic aspect of salt stress is signaled via the SOS pathway where a calcium-responsive SOS3-SOS2 protein kinase complex controls the expression and activity of ion transporters such as SOS1. Osmotic stress activates several protein kinases including mitogen-activated kinases, which may mediate osmotic homeostasis and/or detoxification responses. A number of phospholipid systems are activated by osmotic stress, generating a diverse array of messenger molecules, some of which may function upstream of the osmotic stress-activated protein kinases. Abscisic acid biosynthesis is regulated by osmotic stress at multiple steps. Both ABA-dependent and -independent osmotic stress signaling first modify constitutively expressed transcription factors, leading to the expression of early response transcriptional activators, which then activate downstream stress tolerance effector genes.

5,328 citations

Journal ArticleDOI
TL;DR: The identification of mechanisms and molecules associated with macrophage plasticity and polarized activation provides a basis for Macrophage-centered diagnostic and therapeutic strategies.
Abstract: Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to IFNs, Toll-like receptor engagement, or IL-4/IL-13 signaling, macrophages undergo M1 (classical) or M2 (alternative) activation, which represent extremes of a continuum in a universe of activation states. Progress has now been made in defining the signaling pathways, transcriptional networks, and epigenetic mechanisms underlying M1-M2 or M2-like polarized activation. Functional skewing of mononuclear phagocytes occurs in vivo under physiological conditions (e.g., ontogenesis and pregnancy) and in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer). However, in selected preclinical and clinical conditions, coexistence of cells in different activation states and unique or mixed phenotypes have been observed, a reflection of dynamic changes and complex tissue-derived signals. The identification of mechanisms and molecules associated with macrophage plasticity and polarized activation provides a basis for macrophage-centered diagnostic and therapeutic strategies.

4,721 citations

Journal ArticleDOI
01 Jun 2000
TL;DR: Evidence for plant stress signaling systems is summarized, some of which have components analogous to those that regulate osmotic stress responses of yeast, some that presumably function in intercellular coordination or regulation of effector genes in a cell-/tissue-specific context required for tolerance of plants.
Abstract: ▪ Abstract Plant responses to salinity stress are reviewed with emphasis on molecular mechanisms of signal transduction and on the physiological consequences of altered gene expression that affect biochemical reactions downstream of stress sensing. We make extensive use of comparisons with model organisms, halophytic plants, and yeast, which provide a paradigm for many responses to salinity exhibited by stress-sensitive plants. Among biochemical responses, we emphasize osmolyte biosynthesis and function, water flux control, and membrane transport of ions for maintenance and re-establishment of homeostasis. The advances in understanding the effectiveness of stress responses, and distinctions between pathology and adaptive advantage, are increasingly based on transgenic plant and mutant analyses, in particular the analysis of Arabidopsis mutants defective in elements of stress signal transduction pathways. We summarize evidence for plant stress signaling systems, some of which have components analogous to t...

4,596 citations

Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations