scispace - formally typeset
Search or ask a question
Author

Qiang Song

Bio: Qiang Song is an academic researcher from Tsinghua University. The author has contributed to research in topics: AC power & Voltage source. The author has an hindex of 29, co-authored 93 publications receiving 4350 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit of high frequency-link (HFL) power conversion systems.
Abstract: High-frequency-link (HFL) power conversion systems (PCSs) are attracting more and more attentions in academia and industry for high power density, reduced weight, and low noise without compromising efficiency, cost, and reliability. In HFL PCSs, dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit. This paper gives an overview of DAB-IBDC for HFL PCSs. First, the research necessity and development history are introduced. Second, the research subjects about basic characterization, control strategy, soft-switching solution and variant, as well as hardware design and optimization are reviewed and analyzed. On this basis, several typical application schemes of DAB-IBDC for HPL PCSs are presented in a worldwide scope. Finally, design recommendations and future trends are presented. As the core circuit of HFL PCSs, DAB-IBDC has wide prospects. The large-scale practical application of DAB-IBDC for HFL PCSs is expected with the recent advances in solid-state semiconductors, magnetic and capacitive materials, and microelectronic technologies.

1,306 citations

Journal ArticleDOI
TL;DR: In this article, a steady-state analysis method for an MMC-based VSC-HVDC system is proposed to find a circular interaction among the electrical quantities in a MMC and a key equation can be established to solve the unknown circulating current.
Abstract: Modular multilevel converters (MMC) are considered a top converter alternative for voltage-source converter (VSC) high-voltage, direct current (HVDC) applications. Main circuit design and converter performance evaluation are always important issues to consider before installing a VSC-HVDC system. Investigation into a steady-state analysis method for an MMC-based VSC-HVDC system is necessary. This paper finds a circular interaction among the electrical quantities in an MMC. Through this circular interaction, a key equation can be established to solve the unknown circulating current. A new steady-state model is developed to simply and accurately describe the explicit analytical expressions for various voltage and current quantities in an MMC. The accuracy of the expressions is improved by the consideration of the circulating current when deriving all the analytical expressions. The model's simplicity is demonstrated by having only one key equation to solve. Based on the analytical expressions for the arm voltages, the equivalent circuits for MMC are proposed to improve the current understanding of the operation of MMC. The feasibility and accuracy of the proposed method are verified by comparing its results with the simulation and experimental results.

433 citations

Journal ArticleDOI
Xiaoqian Li1, Qiang Song1, Wenhua Liu1, Hong Rao, Shukai Xu, Licheng Li 
TL;DR: In this article, the authors proposed a protection scheme to implement fast fault clearance and automatic recovery for non-permanent faults on dc lines by employing double thyristor switches, the freewheeling effect of diodes is eliminated and the dc-link fault current is allowed to freely decay to zero.
Abstract: A high-voltage direct current system using modular multilevel converter (MMC-HVDC) is a potential candidate for grid integration of renewable energy over long distances. The dc-link fault is an issue MMC-HVDC must deal with, especially for the nonpermanent faults when using overhead lines. This paper proposed a protection scheme to implement fast fault clearance and automatic recovery for nonpermanent faults on dc lines. By employing double thyristor switches, the freewheeling effect of diodes is eliminated and the dc-link fault current is allowed to freely decay to zero. Then, the dc arc can be naturally extinguished and the insulation on the short-circuit point can be restored. The thyristor switches convert the dc-link fault into an ac short circuit of the ac grid through MMC arms. The ac short-circuit current can be cleared simply by turning off all thyristor switches. Since circuit breakers are not tripped during fault clearance, MMC can immediately and automatically rebuild the dc-link voltage and restart power transmission. Simulation results using PSCAD/EMTDC have verified the validity of the proposed protection scheme.

353 citations

Journal ArticleDOI
TL;DR: In this paper, the authors gave the detailed theoretical and experimental analyses of the transmission power of the isolated bidirectional dual-active-bridge dc-dc converter under dual-phase shift (DPS) control.
Abstract: Compared to the traditional single-phase-shift control, dual-phase-shift (DPS) control can greatly improve the performance of the isolated bidirectional dual-active-bridge dc-dc converter (IBDC). This letter points out some wrong knowledge about transmission power of IBDC under DPS control in the earlier studies. On this basis, this letter gives the detailed theoretical and experimental analyses of the transmission power of IBDC under DPS control. And the experimental results showed agreement with theoretical analysis.

289 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed switching characteristic analysis of IBDC under dual-phase shift (DPS) control is presented, and an efficiency-optimized switching strategy is proposed and the corresponding control scheme is designed and implemented.
Abstract: Compared to the traditional single-phase-shift control, dual-phase-shift (DPS) control can greatly improve the performance of the isolated bidirectional dc–dc converter (IBDC). This paper gives a detailed switching characteristic analysis of IBDC under DPS control, establishes a power loss model to predict the dissipated power for each power component, and analyzes the efficiency-optimized characteristic across the whole range. On this basis, an efficiency-optimized switching strategy is proposed and the corresponding control scheme is designed and implemented. At last, an experimental prototype was implemented to verify the feasibility of the proposed switching strategy and correctness of the theoretical analysis. The experimental results show that the proposed method can minimize the power loss and maximize the system efficiency, and these performances are particularly effective for operation conditions with high voltage conversion ratio.

221 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations

Journal ArticleDOI
TL;DR: A general overview of the basics of operation of the MMC along with its control challenges are discussed, and a review of state-of-the-art control strategies and trends is presented as mentioned in this paper.
Abstract: The modular multilevel converter (MMC) has been a subject of increasing importance for medium/high-power energy conversion systems. Over the past few years, significant research has been done to address the technical challenges associated with the operation and control of the MMC. In this paper, a general overview of the basics of operation of the MMC along with its control challenges are discussed, and a review of state-of-the-art control strategies and trends is presented. Finally, the applications of the MMC and their challenges are highlighted.

1,765 citations

Journal ArticleDOI
TL;DR: In this paper, the dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit of high frequency-link (HFL) power conversion systems.
Abstract: High-frequency-link (HFL) power conversion systems (PCSs) are attracting more and more attentions in academia and industry for high power density, reduced weight, and low noise without compromising efficiency, cost, and reliability. In HFL PCSs, dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit. This paper gives an overview of DAB-IBDC for HFL PCSs. First, the research necessity and development history are introduced. Second, the research subjects about basic characterization, control strategy, soft-switching solution and variant, as well as hardware design and optimization are reviewed and analyzed. On this basis, several typical application schemes of DAB-IBDC for HPL PCSs are presented in a worldwide scope. Finally, design recommendations and future trends are presented. As the core circuit of HFL PCSs, DAB-IBDC has wide prospects. The large-scale practical application of DAB-IBDC for HFL PCSs is expected with the recent advances in solid-state semiconductors, magnetic and capacitive materials, and microelectronic technologies.

1,306 citations

Journal ArticleDOI
TL;DR: In this paper, the authors comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques, and discuss the advantages and disadvantages of these voltage boosting techniques and associated converters.
Abstract: DC–DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which fundamental energy storing elements (inductors and capacitors) and/or transformers in conjunction with switch(es) and diode(s) are utilized in the circuit. These techniques include switched capacitor (charge pump), voltage multiplier, switched inductor/voltage lift, magnetic coupling, and multistage/-level, and each has its own merits and demerits depending on application, in terms of cost, complexity, power density, reliability, and efficiency. To meet the growing demand for such applications, new power converter topologies that use the above voltage-boosting techniques, as well as some active and passive components, are continuously being proposed. The permutations and combinations of the various voltage-boosting techniques with additional components in a circuit allow for numerous new topologies and configurations, which are often confusing and difficult to follow. Therefore, to present a clear picture on the general law and framework of the development of next-generation step-up dc–dc converters, this paper aims to comprehensively review and classify various step-up dc–dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc–dc converters are presented and summarized with comparative study of different voltage-boosting techniques.

1,230 citations

Journal ArticleDOI
TL;DR: A review of the latest achievements of modular multilevel converters regarding the mentioned research topics, new applications, and future trends is presented in this article, where the authors present several attractive features such as a modular structure, the capability of transformer-less operation, easy scalability in terms of voltage and current, low expense for redundancy and fault tolerant operation, high availability, utilization of standard components, and excellent quality of the output waveforms.
Abstract: Modular multilevel converters have several attractive features such as a modular structure, the capability of transformer-less operation, easy scalability in terms of voltage and current, low expense for redundancy and fault tolerant operation, high availability, utilization of standard components, and excellent quality of the output waveforms. These features have increased the interest of industry and research in this topology, resulting in the development of new circuit configurations, converter models, control schemes, and modulation strategies. This paper presents a review of the latest achievements of modular multilevel converters regarding the mentioned research topics, new applications, and future trends.

1,123 citations