scispace - formally typeset
Search or ask a question
Author

Qiao-wen Xie

Bio: Qiao-wen Xie is an academic researcher from Cornell University. The author has contributed to research in topics: Nitric oxide synthase & Nitric oxide. The author has an hindex of 26, co-authored 29 publications receiving 20815 citations. Previous affiliations of Qiao-wen Xie include Merck & Co. & National Institutes of Health.

Papers
More filters
Journal ArticleDOI
TL;DR: Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
Abstract: ▪ Abstract At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxid...

4,027 citations

Journal ArticleDOI
23 Sep 1994-Cell
TL;DR: The next ten years will bring forth evidence that NO is produced in slime molds, locusts, beetles, horseshoe crabs, mollusks, chickens, mice, rats, cows, and humans, and its physiologic roles will be at least as protean as those discovered for corticosteroids in the 194Os- 1980s.

2,917 citations

Journal ArticleDOI
TL;DR: Reporter constructs containing truncated promoter regions revealed that activation of NF-kappa B/Rel is critical in the induction of iNOS by LPS, however, additional, newly synthesized proteins contribute to the NF- kappa Bd-dependent transcription factor complex on the iN OS promoter in LPS-treated mouse macrophages.

2,195 citations

Journal ArticleDOI
10 Apr 1992-Science
TL;DR: The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.
Abstract: Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.

1,890 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal ArticleDOI
TL;DR: This Review suggests a new grouping of macrophages based on three different homeostatic activities — host defence, wound healing and immune regulation, and proposes that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation.
Abstract: Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.

7,384 citations

Journal ArticleDOI
TL;DR: The discovery that mammalian cells generate nitric oxide, a gas previously considered to be merely an atmospheric pollutant, is providing important information about many biologic processes.
Abstract: The discovery that mammalian cells generate nitric oxide, a gas previously considered to be merely an atmospheric pollutant, is providing important information about many biologic processes. Nitric oxide is synthesized from the amino acid L-arginine by a family of enzymes, the nitric oxide synthases, through a hitherto unrecognized metabolic route -- namely, the L-arginine-nitric oxide pathway1–8. The synthesis of nitric oxide by vascular endothelium is responsible for the vasodilator tone that is essential for the regulation of blood pressure. In the central nervous system nitric oxide is a neurotransmitter that underpins several functions, including the formation of memory. . . .

6,464 citations

Journal ArticleDOI
TL;DR: The transcription factor NF-κB has attracted widespread attention among researchers in many fields based on its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases.
Abstract: ▪ Abstract The transcription factor NF-κB has attracted widespread attention among researchers in many fields based on the following: its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases. A primary level of control for NF-κB is through interactions with an inhibitor protein called IκB. Recent evidence confirms the existence of multiple forms of IκB that appear to regulate NF-κB by distinct mechanisms. NF-κB can be activated by exposure of cells to LPS or inflammatory cytokines such as TNF or IL-1, viral infection or expression of certain viral gene products, UV irradiation, B or T cell activation, and by other physiological and nonphysiological stimuli. Activation of NF-κB to move into the nucleus is controlled by the targeted phosphorylation and subsequent degradation of IκB. Exciting new research has elaborated several important and unexpected findings that...

5,833 citations