scispace - formally typeset
Search or ask a question
Author

Qichao Huang

Bio: Qichao Huang is an academic researcher from Fourth Military Medical University. The author has contributed to research in topics: Mitochondrion & Medicine. The author has an hindex of 18, co-authored 28 publications receiving 1117 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that increased mitochondrial fission plays a critical role in regulation of HCC cell survival, which provides a strong evidence for this process as drug target in HCC treatment.
Abstract: Mitochondrial morphology is dynamically remodeled by fusion and fission in cells, and dysregulation of this process is closely implicated in tumorigenesis. However, the mechanism by which mitochondrial dynamics influence cancer cell survival is considerably less clear, especially in hepatocellular carcinoma (HCC). In this study, we systematically investigated the alteration of mitochondrial dynamics and its functional role in the regulation of autophagy and HCC cell survival. Furthermore, the underlying molecular mechanisms and therapeutic application were explored in depth. Mitochondrial fission was frequently upregulated in HCC tissues mainly due to an elevated expression ratio of DNM1L to MFN1, which significantly contributed to poor prognosis of HCC patients. Increased mitochondrial fission by forced expression of DNM1L or knockdown of MFN1 promoted the survival of HCC cells both in vitro and in vivo mainly by facilitating autophagy and inhibiting mitochondria-dependent apoptosis. We further demonstrated that the survival-promoting role of increased mitochondrial fission was mediated via elevated ROS production and subsequent activation of AKT, which facilitated MDM2-mediated TP53 degradation, and NFKBIA- and IKK-mediated transcriptional activity of NFKB in HCC cells. Also, a crosstalk between TP53 and NFKB pathways was involved in the regulation of mitochondrial fission-mediated cell survival. Moreover, treatment with mitochondrial division inhibitor-1 significantly suppressed tumor growth in an in vivo xenograft nude mice model. Our findings demonstrate that increased mitochondrial fission plays a critical role in regulation of HCC cell survival, which provides a strong evidence for this process as drug target in HCC treatment.

235 citations

Journal ArticleDOI
TL;DR: It is demonstrated that CD147 is a critical regulator of fatty acid metabolism, which provides a strong line of evidence for this molecule to be used as a drug target in cancer treatment.

137 citations

Journal ArticleDOI
26 Jun 2017-Oncogene
TL;DR: It is demonstrated that the MCU complex was dysregulated in hepatocellular carcinoma (HCC) cells and significantly correlated with metastasis and poor prognosis of HCC patients, and evidence supporting a metastasis-promoting role for theMCU-dependent mitochondrial Ca2+ uptake in HCC is provided.
Abstract: Mitochondrial Ca2+ signaling, which is strongly dependent on the mitochondrial Ca2+ uniporter (MCU) complex, has a series of key roles in physiopathological processes, including energy metabolism, reactive oxygen species (ROS) production and cell apoptosis. However, a mechanistic understanding of how the mitochondrial Ca2+ signaling is remodeled and its functional roles remains greatly limited in cancers, especially in hepatocellular carcinoma. Here we demonstrated that the MCU complex was dysregulated in hepatocellular carcinoma (HCC) cells and significantly correlated with metastasis and poor prognosis of HCC patients. Upregulation of MCU clearly enhanced the Ca2+ uptake into mitochondria, which significantly promoted ROS production by downregulating nicotinamide adenine dinucleotide+ (NAD+)/reduced form of nicotinamide adenine dinucleotid (NADH) ratio and the NAD+-dependent deacetylase activity of sirtuin 3 to inhibit superoxide dismutase 2 (SOD2) activity. Moreover, our data indicated that the MCU-dependent mitochondrial Ca2+ uptake promotes matrix metalloproteinase-2 activity and cell motility by ROS-activated c-Jun N-terminal kinase pathway, and thus contributed to the increased ability of invasion and migration in vitro and intrahepatic and distal lung metastasis in vivo of HCC cells. In addition, treatment with the mitochondrial Ca2+-buffering protein parvalbumin significantly suppressed ROS production and the ability of HCC metastasis. Our study uncovers a mechanism that links the remodeling of mitochondrial Ca2+ homeostasis to ROS production, and provides evidence supporting a metastasis-promoting role for the MCU-dependent mitochondrial Ca2+ uptake in HCC. Our findings suggest that the mitochondrial Ca2+ uptake machinery may potentially be a novel therapeutic target for HCC metastasis.

125 citations

Journal ArticleDOI
TL;DR: The role of CD147 in the regulation of the Warburg effect in HCC cells is investigated and it is demonstrated that CD147 is a crucial regulator of glucose metabolism.

117 citations

Journal ArticleDOI
17 Oct 2011-PLOS ONE
TL;DR: This study represents the most comprehensive characterization of HBV-related HCC transcriptome including exon level expression changes and novel splicing variants, which illustrated the power of RNA-seq and provided important clues for understanding the molecular mechanisms of HCC pathogenesis at system-wide levels.
Abstract: RNA-seq is a powerful tool for comprehensive characterization of whole transcriptome at both gene and exon levels and with a unique ability of identifying novel splicing variants. To date, RNA-seq analysis of HBV-related hepatocellular carcinoma (HCC) has not been reported. In this study, we performed transcriptome analyses for 10 matched pairs of cancer and non-cancerous tissues from HCC patients on Solexa/Illumina GAII platform. On average, about 21.6 million sequencing reads and 10.6 million aligned reads were obtained for samples sequenced on each lane, which was able to identify >50% of all the annotated genes for each sample. Furthermore, we identified 1,378 significantly differently expressed genes (DEGs) and 24, 338 differentially expressed exons (DEEs). Comprehensive function analyses indicated that cell growth-related, metabolism-related and immune-related pathways were most significantly enriched by DEGs, pointing to a complex mechanism for HCC carcinogenesis. Positional gene enrichment analysis showed that DEGs were most significantly enriched at chromosome 8q21.3–24.3. The most interesting findings were from the analysis at exon levels where we characterized three major patterns of expression changes between gene and exon levels, implying a much complex landscape of transcript-specific differential expressions in HCC. Finally, we identified a novel highly up-regulated exon-exon junction in ATAD2 gene in HCC tissues. Overall, to our best knowledge, our study represents the most comprehensive characterization of HBV-related HCC transcriptome including exon level expression changes and novel splicing variants, which illustrated the power of RNA-seq and provided important clues for understanding the molecular mechanisms of HCC pathogenesis at system-wide levels.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The cancer cell-intrinsic and cell-extrinsics mechanisms through which mitochondria influence all steps of oncogenesis are reviewed, with a focus on the therapeutic potential of targeting mitochondrial metabolism for cancer therapy.
Abstract: Glycolysis has long been considered as the major metabolic process for energy production and anabolic growth in cancer cells. Although such a view has been instrumental for the development of powerful imaging tools that are still used in the clinics, it is now clear that mitochondria play a key role in oncogenesis. Besides exerting central bioenergetic functions, mitochondria provide indeed building blocks for tumor anabolism, control redox and calcium homeostasis, participate in transcriptional regulation, and govern cell death. Thus, mitochondria constitute promising targets for the development of novel anticancer agents. However, tumors arise, progress, and respond to therapy in the context of an intimate crosstalk with the host immune system, and many immunological functions rely on intact mitochondrial metabolism. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial metabolism for cancer therapy.

741 citations

Journal ArticleDOI
TL;DR: The present review characterizes the signalTransduction underlying the conditioning phenomena, including their physical and chemical triggers, intracellular signal transduction, and effector mechanisms, notably in the mitochondria, as a highly concerted spatiotemporal program.
Abstract: Reperfusion is mandatory to salvage ischemic myocardium from infarction, but reperfusion per se contributes to injury and ultimate infarct size. Therefore, cardioprotection beyond that by timely reperfusion is needed to reduce infarct size and improve the prognosis of patients with acute myocardial infarction. The conditioning phenomena provide such cardioprotection, insofar as brief episodes of coronary occlusion/reperfusion preceding (ischemic preconditioning) or following (ischemic postconditioning) sustained myocardial ischemia with reperfusion reduce infarct size. Even ischemia/reperfusion in organs remote from the heart provides cardioprotection (remote ischemic conditioning). The present review characterizes the signal transduction underlying the conditioning phenomena, including their physical and chemical triggers, intracellular signal transduction, and effector mechanisms, notably in the mitochondria. Cardioprotective signal transduction appears as a highly concerted spatiotemporal program. Although the translation of ischemic postconditioning and remote ischemic conditioning protocols to patients with acute myocardial infarction has been fairly successful, the pharmacological recruitment of cardioprotective signaling has been largely disappointing to date.

666 citations

Posted ContentDOI
14 Mar 2020-bioRxiv
TL;DR: The discovery of the new route CD147-SP for SARS-CoV-2 invading host cells provides a critical target for development of specific antiviral drugs.
Abstract: SUMMARY Currently, COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely spread around the world; nevertheless, so far there exist no specific antiviral drugs for treatment of the disease, which poses great challenge to control and contain the virus. Here, we reported a research finding that SARS-CoV-2 invaded host cells via a novel route of CD147-spike protein (SP). SP bound to CD147, a receptor on the host cells, thereby mediating the viral invasion. Our further research confirmed this finding. First, in vitro antiviral tests indicated Meplazumab, an anti-CD147 humanized antibody, significantly inhibited the viruses from invading host cells, with an EC50 of 24.86 μg/mL and IC50 of 15.16 μg/mL. Second, we validated the interaction between CD147 and SP, with an affinity constant of 1.85×10−7M. Co-Immunoprecipitation and ELISA also confirmed the binding of the two proteins. Finally, the localization of CD147 and SP was observed in SARS-CoV-2 infected Vero E6 cells by immuno-electron microscope. Therefore, the discovery of the new route CD147-SP for SARS-CoV-2 invading host cells provides a critical target for development of specific antiviral drugs.

552 citations