scispace - formally typeset
Search or ask a question
Author

Qihuang Gong

Other affiliations: Shanxi University
Bio: Qihuang Gong is an academic researcher from Peking University. The author has contributed to research in topics: Femtosecond & Plasmon. The author has an hindex of 68, co-authored 1006 publications receiving 22461 citations. Previous affiliations of Qihuang Gong include Shanxi University.
Topics: Femtosecond, Plasmon, Laser, Ionization, Photonics


Papers
More filters
Journal ArticleDOI
TL;DR: Blue phosphorescence approaching the theoretical efficiency has also been achieved, which may overcome the final obstacle against the commercialization of full color display and white light sources from phosphorescent materials.
Abstract: Although organic light-emitting devices have been commercialized as flat panel displays since 1997, only singlet excitons were emitted. Full use of singlet and triplet excitons, electrophosphorescence, has attracted increasing attentions after the premier work made by Forrest, Thompson, and co-workers. In fact, red electrophosphorescent dye has already been used in sub-display of commercial mobile phones since 2003. Highly efficient green phosphorescent dye is now undergoing of commercialization. Very recently, blue phosphorescence approaching the theoretical efficiency has also been achieved, which may overcome the final obstacle against the commercialization of full color display and white light sources from phosphorescent materials. Combining light out-coupling structures with highly efficient phosphors (shown in the table-of-contents image), white emission with an efficiency matching that of fluorescent tubes (90 lm/W) has now been realized. It is possible to tune the color to the true white region by changing to a deep blue emitter and corresponding wide gap host and transporting material for the blue phosphor. In this article, recent progresses in red, green, blue, and white electrophosphorescent materials for OLEDs are reviewed, with special emphasis on blue electrophosphorescent materials.

1,240 citations

Journal ArticleDOI
TL;DR: [*] Prof. A. Cao, Z. Liu, Prof. M. Liu Institute of Nanochemistry and Nanobiology Shanghai University, Shanghai, 200444 (P. R. China) E-mail: ancao@shu.edu.cn Prof. Y. Liu Beijing National Laboratory of Molecular Science College of Chemistry and Molecular Engineering Peking University, Beijing, 100871 (P
Abstract: [*] Prof. A. Cao, Z. Liu, Prof. M. Wu, Z. Ye, Z. Cai, Y. Chang, Prof. Y. Liu Institute of Nanochemistry and Nanobiology Shanghai University, Shanghai, 200444 (P. R. China) E-mail: ancao@shu.edu.cn Prof. S. Wang, S. Chu, Prof. Q. Gong State Key Laboratory for Mesoscopic Physics, School of Physics Peking University, Beijing, 100871 (P. R. China) E-mail: wangsf@pku.edu.cn Prof. Y. Liu Beijing National Laboratory of Molecular Science College of Chemistry and Molecular Engineering Peking University, Beijing, 100871 (P. R. China) E-mail: yliu@pku.edu.cn

679 citations

Journal ArticleDOI
20 Apr 2018-Science
TL;DR: A multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement is demonstrated, and a programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit.
Abstract: The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies.

528 citations

Journal ArticleDOI
TL;DR: In this article, visible-frequency silicon metasurfaces formed by three kinds of nanoblocks multiplexed in a subwavelength unit constitute a metamolecule, which are capable of wavefront manipulation for red, green, and blue light simultaneously.
Abstract: Dielectric metasurfaces built up with nanostructures of high refractive index represent a powerful platform for highly efficient flat optical devices due to their easy-tuning electromagnetic scattering properties and relatively high transmission efficiencies. Here we show visible-frequency silicon metasurfaces formed by three kinds of nanoblocks multiplexed in a subwavelength unit to constitute a metamolecule, which are capable of wavefront manipulation for red, green, and blue light simultaneously. Full phase control is achieved for each wavelength by independently changing the in-plane orientations of the corresponding nanoblocks to induce the required geometric phases. Achromatic and highly dispersive meta-holograms are fabricated to demonstrate the wavefront manipulation with high resolution. This technique could be viable for various practical holographic applications and flat achromatic devices.

444 citations

Journal ArticleDOI
TL;DR: In this paper, a programmable bipartite entangled system with dimension up to 15 × 15$ on a large-scale silicon-photonics quantum circuit is presented, which can robustly generate, control and analyze high-dimensional entanglement.
Abstract: The ability to control multidimensional quantum systems is key for the investigation of fundamental science and for the development of advanced quantum technologies. Here we demonstrate a multidimensional integrated quantum photonic platform able to robustly generate, control and analyze high-dimensional entanglement. We realize a programmable bipartite entangled system with dimension up to $15 \times 15$ on a large-scale silicon-photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality and controllability of our multidimensional technology, and further exploit these abilities to demonstrate key quantum applications experimentally unexplored before, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides a prominent experimental platform for the development of multidimensional quantum technologies.

408 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors show the double-slit interference effect in the strong-field ionization of neon dimers by employing COLTRIMS method to record the momentum distribution of the photoelectrons in the molecular frame.
Abstract: Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.

7,160 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations