scispace - formally typeset
Search or ask a question
Author

Qilong Min

Bio: Qilong Min is an academic researcher from State University of New York System. The author has contributed to research in topics: Radiative transfer & Aerosol. The author has an hindex of 31, co-authored 150 publications receiving 3667 citations. Previous affiliations of Qilong Min include University at Albany, SUNY & University of Alaska Fairbanks.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the importance of thin liquid water clouds to the Earth's energy balance is discussed, and a retrieval algorithm intercomparison is conducted to evaluate the issues involved.
Abstract: Many of the clouds important to the Earth's energy balance, from the Tropics to the Arctic, contain small amounts of liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP), when the LWP is small (i.e., < 100 g m−2; clouds with LWP less than this threshold will be referred to as “thin”). Thus, the radiative properties of these thin liquid water clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are thin, potentially mixed phase, and often broken (i.e., have large 3D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison used data collected at the Atmospheric Radiation Measurement (ARM) Southern G...

208 citations

Journal ArticleDOI
TL;DR: In this paper, a family of inversion methods were used to estimate the optical depth of warm clouds from surface measurements of spectral irradiance. But the results were not comparable to those obtained from the GOES satellite.
Abstract: We describe a family of inversion methods to infer the optical depth, τ, of warm clouds from surface measurements of spectral irradiance. Our most complex retrieval also uses the total liquid water path measured by a microwave radiometer to obtain the effective radius, re, of the cloud droplets. We apply these retrievals to data from the Atmospheric Radiation Measurement (ARM) Program, and compare our results to those produced by the GOES satellite for episodes where total overcast was observed. Our surface-based estimates of τ agree with those from GOES when the optical depths are <10, but are consistently larger by as much as a factor of 2 when optical depths are greater. We show that the uncertainties associated with the surface-based retrievals are less than those done from a satellite, and argue from the time series of the observations and the statistics of the measurements that the disagreement is not merely a consequence of the larger spatial average sampled by the satellite.

183 citations

Journal ArticleDOI
TL;DR: In this paper, an assessment of aerosol-cloud interactions from ground-based remote sensing under coastal stratiform clouds is presented, which utilizes a long-term, high-temporal resolution data set from the Atmospheric Radiation Measurement (ARM) Program deployment at Pt. Reyes, California, United States, in 2005 to provide statistically robust measures of ACI and to characterize the variability of the measures based on variability in environmental conditions and observational approaches.
Abstract: [1] An assessment of aerosol-cloud interactions (ACI) from ground-based remote sensing under coastal stratiform clouds is presented. The assessment utilizes a long-term, high temporal resolution data set from the Atmospheric Radiation Measurement (ARM) Program deployment at Pt. Reyes, California, United States, in 2005 to provide statistically robust measures of ACI and to characterize the variability of the measures based on variability in environmental conditions and observational approaches. The average ACIN (= dlnNd/dlnα, the change in cloud drop number concentration with aerosol concentration) is 0.48, within a physically plausible range of 0–1.0. Values vary between 0.18 and 0.69 with dependence on (1) the assumption of constant cloud liquid water path (LWP), (2) the relative value of cloud LWP, (3) methods for retrieving Nd, (4) aerosol size distribution, (5) updraft velocity, and (6) the scale and resolution of observations. The sensitivity of the local, diurnally averaged radiative forcing to this variability in ACIN values, assuming an aerosol perturbation of 500 cm−3 relative to a background concentration of 100 cm−3, ranges between −4 and −9 W m−2. Further characterization of ACI and its variability is required to reduce uncertainties in global radiative forcing estimates.

164 citations

Journal ArticleDOI
TL;DR: In this paper, a 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-sampled remote marine environment.
Abstract: Capsule: A 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-sampled remote marine environment The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009- December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

133 citations

Journal ArticleDOI
TL;DR: In this paper, seven vector radiative transfer codes are compared for the case of underlying black surface, including three techniques based on the discrete ordinate method (DOM), two Monte-Carlo methods, the successive orders scattering method, and a modified doubling-addressing technique.
Abstract: In this paper seven vector radiative transfer codes are inter-compared for the case of underlying black surface. They include three techniques based on the discrete ordinate method (DOM), two Monte-Carlo methods, the successive orders scattering method, and a modified doubling-adding technique. It was found that all codes give very similar results. Therefore, we were able to produce benchmark results for the Stokes parameters both for reflected and transmitted light in the cases of molecular, aerosol and cloudy multiply scattering media. It was assumed that the single scattering albedo is equal to one. Benchmark results have been provided by several studies before, including Coulson et al. [22], Garcia and Siewert [7,8], Wauben and Hovenier [10], and Natraj et al. [11] among others. However, the case of the elongated phase functions such as for a cloud and with a high angular resolution is presented here for the first time. Also in difference with other studies, we make inter-comparisons using several codes for the same input dataset, which enables us to quantify the corresponding errors more accurately.

126 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: CloudSat as discussed by the authors is a satellite experiment designed to measure the vertical structure of clouds from space, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL).
Abstract: CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA–CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the CALIPSO lidar footprint and the other measurements of the constellation. The precision and near simultaneity of this overlap creates a unique multisatellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profiles of cloud properties provided by CloudSat on the global scale fill a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring these profi...

1,929 citations

Journal ArticleDOI
TL;DR: The line-by-line radiative transfer model (LBLRTM), the line file creation program (LNFL), RRTM_LW and RRTm_SW, Monochromatic Radiative Transfer Model (MonoRTM) as mentioned in this paper, MT_CKD Continuum; and the Kurucz Solar Source Function (SDF).
Abstract: The radiative transfer models developed at AER are being used extensively for a wide range of applications in the atmospheric sciences. This communication is intended to provide a coherent summary of the various radiative transfer models and associated databases publicly available from AER ( http://www.rtweb.aer.com ). Among the communities using the models are the remote sensing community (e.g. TES, IASI), the numerical weather prediction community (e.g. ECMWF, NCEP GFS, WRF, MM5), and the climate community (e.g. ECHAM5). Included in this communication is a description of the central features and recent updates for the following models: the line-by-line radiative transfer model (LBLRTM); the line file creation program (LNFL); the longwave and shortwave rapid radiative transfer models, RRTM_LW and RRTM_SW; the Monochromatic Radiative Transfer Model (MonoRTM); the MT_CKD Continuum; and the Kurucz Solar Source Function. LBLRTM and the associated line parameter database (e.g. HITRAN 2000 with 2001 updates) play a central role in the suite of models. The physics adopted for LBLRTM has been extensively analyzed in the context of closure experiments involving the evaluation of the model inputs (e.g. atmospheric state), spectral radiative measurements and the spectral model output. The rapid radiative transfer models are then developed and evaluated using the validated LBLRTM model.

1,600 citations