scispace - formally typeset
Search or ask a question
Author

Qin Lei

Bio: Qin Lei is an academic researcher from Arizona State University. The author has contributed to research in topics: Voltage & Inverter. The author has an hindex of 17, co-authored 73 publications receiving 2029 citations. Previous affiliations of Qin Lei include Huazhong University of Science and Technology & General Electric.


Papers
More filters
Journal ArticleDOI
TL;DR: An intelligent load-shedding algorithm for intentional islanding and an algorithm of synchronization for grid reconnection to implement grid-connected and intentional-islanding operations of distributed power generation are proposed.
Abstract: Intentional islanding describes the condition in which a microgrid or a portion of the power grid, which consists of a load and a distributed generation (DG) system, is isolated from the remainder of the utility system. In this situation, it is important for the microgrid to continue to provide adequate power to the load. Under normal operation, each DG inverter system in the microgrid usually works in constant current control mode in order to provide a preset power to the main grid. When the microgrid is cut off from the main grid, each DG inverter system must detect this islanding situation and must switch to a voltage control mode. In this mode, the microgrid will provide a constant voltage to the local load. This paper describes a control strategy that is used to implement grid-connected and intentional-islanding operations of distributed power generation. This paper proposes an intelligent load-shedding algorithm for intentional islanding and an algorithm of synchronization for grid reconnection.

581 citations

Journal ArticleDOI
TL;DR: This paper analyzes the stability problem of the grid-connected voltage-source inverter (VSI) with LC filters, which demonstrates that the possible grid-impedance variations have a significant influence on the system stability when conventional proportional-integrator (PI) controller is used for grid current control.
Abstract: This paper analyzes the stability problem of the grid-connected voltage-source inverter (VSI) with LC filters, which demonstrates that the possible grid-impedance variations have a significant influence on the system stability when conventional proportional-integrator (PI) controller is used for grid current control. As the grid inductive impedance increases, the low-frequency gain and bandwidth of the PI controller have to be decreased to keep the system stable, thus degrading the tracking performance and disturbance rejection capability. To deal with this stability problem, an H∞ controller with explicit robustness in terms of grid-impedance variations is proposed to incorporate the desired tracking performance and the stability margin. By properly selecting the weighting functions, the synthesized H∞ controller exhibits high gains at the vicinity of the line frequency, similar to the traditional proportional-resonant controller; meanwhile, it has enough high-frequency attenuation to keep the control loop stable. An inner inverter-output-current loop with high bandwidth is also designed to get better disturbance rejection capability. The selection of weighting functions, inner inverter-output-current loop design, and system disturbance rejection capability are discussed in detail in this paper. Both simulation and experimental results of the proposed H∞ controller as well as the conventional PI controller are given and compared, which validates the performance of the proposed control scheme.

388 citations

Journal ArticleDOI
TL;DR: Two strategies are proposed with the related design principles to control the new energy-stored qZSI when applied to the PV power system and prove the effectiveness of the proposed control of the inverter's input and output powers and battery power regardless of the charging or discharging situation.
Abstract: The quasi-Z-source inverter (qZSI) with battery operation can balance the stochastic fluctuations of photovoltaic (PV) power injected to the grid/load, but its existing topology has a power limitation due to the wide range of discontinuous conduction mode during battery discharge. This paper proposes a new topology of the energy-stored qZSI to overcome this disadvantage. The operating characteristic of the proposed solution is analyzed in detail and compared to that of the existing topology. Two strategies are proposed with the related design principles to control the new energy-stored qZSI when applied to the PV power system. They can control the inverter output power, track the PV panel's maximum power point, and manage the battery power, simultaneously. The voltage boost and inversion, and energy storage are integrated in a single-stage inverter. An experimental prototype is built to test the proposed circuit and the two discussed control methods. The obtained results verify the theoretical analysis and prove the effectiveness of the proposed control of the inverter's input and output powers and battery power regardless of the charging or discharging situation. A real PV panel is used in the grid-tie test of the proposed energy-stored qZSI, which demonstrates three operational modes suitable for application in the PV power system.

264 citations

Journal ArticleDOI
TL;DR: Simulation and experimental results verify operation of the proposed Z-source matrix converter, analytical results, and control method, and achieve low cost, high efficiency, and reliability, compared to the traditional matrix converters.
Abstract: This paper extends the Z-source concept to matrix converters and explores a family of Z-source matrix converters. Their principles and characteristics are analyzed, and a simplified voltage-fed Z-source matrix converter is used as an example to demonstrate its operation, voltage gain versus modulation index, PWM method, boost control, and implementation of the control. Both simulation and experimental results verify operation of the proposed Z-source matrix converter, analytical results, and control method. The Z-source converters can achieve buck and boost operation with reduced number of switches needed, therefore achieving low cost, high efficiency, and reliability, compared to the traditional matrix converters.

131 citations

Journal ArticleDOI
TL;DR: In this paper, a reverse-blocking insulated-gate bipolar-transistor-based current-fed qZSI prototype was developed in the laboratory, and the available operating regions for motoring and regeneration operation were analyzed.
Abstract: The conventional current-source inverter has two major problems: unidirectional power flow and voltage boost operation, which make it impossible to be used in many applications, such as hybrid electric vehicles and general-purpose variable-speed motor drives. Z-source inverters (ZSIs) can solve both problems. Quasi-ZSIs (qZSIs) were recently proposed as an important improvement to traditional ZSIs. Besides the advantages inherited from ZSIs, qZSIs also have several of their own merits. This paper presents a comprehensive study on the new features of current-fed qZSI, including the advantageous buck-boost function, improved reliability, reduced passive component ratings, and unique regeneration capability. The current-fed qZSIs are bidirectional with an additional diode, unlike the voltage-fed ZSI that needs a switch to achieve bidirectional power flow. A modified space vector pulse-width-modulation method is proposed, and the available operating regions for motoring and regeneration operation are analyzed in this paper. Since the current-fed qZSI has the same operation as the current-fed ZSI, many results of this paper are also applicable to the current-fed ZSI. A reverse-blocking insulated-gate bipolar-transistor-based current-fed qZSI prototype was developed in the laboratory. Simulation and experimental results are shown to verify the theoretical analysis.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a review of issues concerning microgrid issues and provides an account of research in areas related to microgrids, including distributed generation, microgrid value propositions, applications of power electronics, economic issues, micro grid operation and control, micro grids clusters, and protection and communications issues.
Abstract: The significant benefits associated with microgrids have led to vast efforts to expand their penetration in electric power systems. Although their deployment is rapidly growing, there are still many challenges to efficiently design, control, and operate microgrids when connected to the grid, and also when in islanded mode, where extensive research activities are underway to tackle these issues. It is necessary to have an across-the-board view of the microgrid integration in power systems. This paper presents a review of issues concerning microgrids and provides an account of research in areas related to microgrids, including distributed generation, microgrid value propositions, applications of power electronics, economic issues, microgrid operation and control, microgrid clusters, and protection and communications issues.

875 citations

01 Jan 2015
TL;DR: An overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems is presented in this paper.
Abstract: Photovoltaic (PV) energy has grown at an average annual rate of 60% in the last five years, surpassing one third of the cumulative wind energy installed capacity, and is quickly becoming an important part of the energy mix in some regions and power systems. This has been driven by a reduction in the cost of PV modules. This growth has also triggered the evolution of classic PV power converters from conventional singlephase grid-tied inverters to more complex topologies to increase efficiency, power extraction from the modules, and reliability without impacting the cost. This article presents an overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems. In addition, the recent research and emerging PV converter technology are discussed, highlighting their possible advantages compared with the present technology. Solar PV energy conversion systems have had a huge growth from an accumulative total power equal to approximately 1.2 GW in 1992 to 136 GW in 2013 (36 GW during 2013) [1]. This phenomenon has been possible because of several factors all working together to push the PV energy to cope with one important position today (and potentially a fundamental position in the near future). Among these factors are the cost reduction and increase in efficiency of the PV modules, the search for alternative clean energy sources (not based on fossil fuels), increased environmental awareness, and favorable political regulations from local governments (establishing feed-in tariffs designed to accelerate investment in renewable energy technologies). It has become usual to see PV systems installed on the roofs of houses or PV farms next to the roads in the countryside. Grid-connected PV systems account for more than 99% of the PV installed capacity compared to

772 citations

Journal ArticleDOI
TL;DR: An overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems is presented in this article.
Abstract: Photovoltaic (PV) energy has grown at an average annual rate of 60% in the last five years, surpassing one third of the cumulative wind energy installed capacity, and is quickly becoming an important part of the energy mix in some regions and power systems. This has been driven by a reduction in the cost of PV modules. This growth has also triggered the evolution of classic PV power converters from conventional single-phase grid-tied inverters to more complex topologies to increase efficiency, power extraction from the modules, and reliability without impacting the cost. This article presents an overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems. In addition, the recent research and emerging PV converter technology are discussed, highlighting their possible advantages compared with the present technology.

772 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of power management strategies for a hybrid ac/dc microgrid system, which includes different system structures, different operation modes, a thorough study of various power management and control schemes in both steady state and transient conditions, and examples of powermanagement and control strategies.
Abstract: Today, conventional power systems are evolving to modern smart grids, where interconnected microgrids may dominate the distribution system with high penetration of renewable energy and energy storage systems. The hybrid ac/dc systems with dc and ac sources/loads are considered to be the most possible future distribution or even transmission structures. For such hybrid ac/dc microgrids, power management strategies are one of the most critical operation aspects. This paper presents an overview of power management strategies for a hybrid ac/dc microgrid system, which includes different system structures (ac-coupled, dc-coupled, and ac–dc-coupled hybrid microgrids), different operation modes, a thorough study of various power management and control schemes in both steady state and transient conditions, and examples of power management and control strategies. Finally, discussion and recommendations of power management strategies for the further research are presented.

707 citations

Journal ArticleDOI
TL;DR: This review paper is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers.
Abstract: Impedance networks cover the entire of electric power conversion from dc (converter, rectifier), ac (inverter), to phase and frequency conversion (ac-ac) in a wide range of applications. Various converter topologies have been reported in the literature to overcome the limitations and problems of the traditional voltage source, current source as well as various classical buck-boost, unidirectional, and bidirectional converter topologies. Proper implementation of the impedance-source network with appropriate switching configurations and topologies reduces the number of power conversion stages in the system power chain, which may improve the reliability and performance of the power system. The first part of this paper provides a comprehensive review of the various impedance-source-networks-based power converters and discusses the main topologies from an application point of view. This review paper is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers. A comprehensive review of various modeling, control, and modulation techniques for the impedance-source converters/inverters will be presented in Part II.

601 citations