scispace - formally typeset
Search or ask a question
Author

Qin M. Chen

Bio: Qin M. Chen is an academic researcher from University of Arizona. The author has contributed to research in topics: Gene expression & Medicine. The author has an hindex of 30, co-authored 63 publications receiving 2690 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results obtained on fibroblasts retrovirally transfected with the human papillomavirus E7 cDNA suggest that retinoblastoma protein (Rb) regulates the expression of TGF-β1 in stressful conditions, leading to SIPS and overexpression of these four genes.

320 citations

Journal ArticleDOI
TL;DR: Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of NRF2, and de novo Nrf1 protein translation.
Abstract: The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.

253 citations

Journal ArticleDOI
TL;DR: The experimental results of extending the replicative life span by reducing ambient oxygen tension or by N‐tert‐butyl‐alpha‐phenylnitrone (PBN) argue a role of oxidative damage in replicative senescence.
Abstract: Normal human diploid fibroblasts (HDFs) undergo replicative senescence inevitably in tissue culture after a certain number of cell divisions. A number of molecular changes observed in replicative senescent cells occur in somatic cells during the process of aging. Genetic studies on replicative senescence indicate the control of tumor suppression mechanisms. Despite the significance of replicative senescence in aging and cancer, little is known about the central cause of the complex changes observed in replicative senescent cells. The interest in the phenomenon has intensified in recent years, since damaging agents, certain oncogenes and tumor suppressor genes have been found to induce features of senescence in early passage young HDFs or in immortalized tumor cells. The reported features of senescence are summarized here in order to clarify the concept of replicative senescence or premature senescence. The experimental results of extending the replicative life span by reducing ambient oxygen tension or by N-tert-butyl-alpha-phenylnitrone (PBN) argue a role of oxidative damage in replicative senescence. By inducing premature senescence with a pulse treatment of H2O2, we can study the role of the cell cycle checkpoint proteins p53, p21, p16 and Rb in gaining each feature of senescence. Although p53 and Rb control G1 arrest and Rb appears to control cell enlargement, activation of the senescent associate beta-galactosidase, loss of cell replication and multiple molecular changes observed in premature senescent or replicative senescent cells are likely controlled by mechanisms beyond the cell cycle checkpoints.

176 citations

Journal ArticleDOI
TL;DR: This work tests whether the acquisition of a senescent phenotype after mild-dose hydrogen peroxide exposure requires telomere shortening, and the role of cell cycle checkpoints centered on p21 in premature senescence induced by H(2)O(2).

176 citations

Journal ArticleDOI
TL;DR: The data present a novel phenomenon of quick onset of the antioxidant/detoxification response via increased translation of Nrf2 by oxidants through stress-induced de novo protein translation.
Abstract: Nf-E2 related factor-2 (Nrf2) is a basic leucine zipper transcription factor that binds and activates the antioxidant response element (ARE) in the promoters of many antioxidant and detoxification genes. We found that H(2)O(2) treatment caused a rapid increase in endogenous Nrf2 protein level in rat cardiomyocytes. Semiquantitative or real-time reverse transcription-polymerase chain reaction failed to show an increase of Nrf2 mRNA level by H(2)O(2) treatment. Measurements of Nrf2 protein stability excluded the possibility of Nrf2 protein stabilization. Although inhibiting protein synthesis with cycloheximide prevented H(2)O(2) from elevating Nrf2 protein level, RNA synthesis inhibition with actinomycin D failed to do so. Measurements of new protein synthesis with [(35)S]methionine incorporation confirmed that H(2)O(2) increased the translation of Nrf2 protein. Inhibitors of phosphoinositide 3-kinase were able to abolish the induction of Nrf2 protein by H(2)O(2). Although H(2)O(2) increased phosphorylation of p70 S6 kinase, rapamycin failed to inhibit H(2)O(2) from elevating Nrf2 protein. H(2)O(2) also induced phosphorylation of eukaryotic translation initiation factor (eIF) 4E and eIF2alpha within 30 and 10 min, respectively. Inhibiting eIF4E with small interfering siRNA or increasing eIF2alpha phosphorylation with salubrinal did not affect Nrf2 elevation by H(2)O(2). Our data present a novel phenomenon of quick onset of the antioxidant/detoxification response via increased translation of Nrf2 by oxidants. The mechanism underlying such stress-induced de novo protein translation may involve multiple components of translational machinery.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Understanding the causes and consequences of cellular senescence has provided novel insights into how cells react to stress, especially genotoxic stress, and how this cellular response can affect complex organismal processes such as the development of cancer and ageing.
Abstract: Cells continually experience stress and damage from exogenous and endogenous sources, and their responses range from complete recovery to cell death. Proliferating cells can initiate an additional response by adopting a state of permanent cell-cycle arrest that is termed cellular senescence. Understanding the causes and consequences of cellular senescence has provided novel insights into how cells react to stress, especially genotoxic stress, and how this cellular response can affect complex organismal processes such as the development of cancer and ageing.

3,677 citations

Journal ArticleDOI
TL;DR: A senescence-associated secretory phenotype (SASP) is acquired that turns senescent fibroblasts into proinflammatory cells that have the ability to promote tumor progression.
Abstract: Cellular senescence is a tumor-suppressive mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells can have deleterious effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescence-associated secretory phenotype (SASP) that turns senescent fibroblasts into proinflammatory cells that have the ability to promote tumor progression.

3,332 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: It is suggested here that oxidative stress is an important modulator of telomeres loss and that telomere-driven replicative senescence is primarily a stress response.

2,125 citations

Journal ArticleDOI
25 Feb 2005-Cell
TL;DR: The senescence response may be antagonistically pleiotropic, promoting early-life survival by curtailing the development of cancer but eventually limiting longevity as dysfunctional senescent cells accumulate.

2,114 citations