scispace - formally typeset
Search or ask a question
Author

Qing Lan

Bio: Qing Lan is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Mortality rate & Population. The author has an hindex of 7, co-authored 7 publications receiving 10222 citations.

Papers
More filters
Journal ArticleDOI
Mohsen Naghavi1, Haidong Wang1, Rafael Lozano1, Adrian Davis2  +728 moreInstitutions (294)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as discussed by the authors, the authors used the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data.

5,792 citations

Journal ArticleDOI
Theo Vos1, Ryan M Barber1, Brad Bell1, Amelia Bertozzi-Villa1  +686 moreInstitutions (287)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as mentioned in this paper, the authors estimated the quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013.

4,510 citations

Journal ArticleDOI
TL;DR: Patterns of the epidemiological transition with a composite indicator of sociodemographic status, which was constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population, were quantified.

1,609 citations

Journal ArticleDOI
Christine F. Skibola1, Christine F. Skibola2, Sonja I. Berndt3, Joseph Vijai4, Lucia Conde1, Lucia Conde2, Zhaoming Wang3, Meredith Yeager3, Paul I.W. de Bakker5, Brenda M. Birmann6, Claire M. Vajdic7, Jia Nee Foo8, Paige M. Bracci9, Roel Vermeulen5, Susan L. Slager10, Silvia de Sanjosé, Sophia S. Wang11, Martha S. Linet3, Gilles Salles12, Gilles Salles13, Qing Lan3, Gianluca Severi14, Gianluca Severi15, Henrik Hjalgrim16, Tracy Lightfoot17, Mads Melbye18, Mads Melbye16, Jian Gu19, Herve Ghesquieres13, Brian K. Link20, Lindsay M. Morton3, Elizabeth A. Holly9, Alex Smith17, Lesley F. Tinker21, Lauren R. Teras22, Anne Kricker23, Nikolaus Becker24, Mark P. Purdue3, John J. Spinelli25, Yawei Zhang26, Graham G. Giles14, Graham G. Giles15, Paolo Vineis27, Alain Monnereau28, Alain Monnereau29, Kimberly A. Bertrand6, Demetrius Albanes3, Anne Zeleniuch-Jacquotte30, Attilio Gabbas31, Charles C. Chung3, Laurie Burdett3, Amy Hutchinson3, Charles E. Lawrence32, Rebecca Montalvan32, Liming Liang6, Jinyan Huang6, Baoshan Ma33, Baoshan Ma6, Jianjun Liu8, Hans-Olov Adami34, Hans-Olov Adami6, Bengt Glimelius35, Bengt Glimelius34, Yuanqing Ye19, Grzegorz S. Nowakowski10, Ahmet Dogan4, Carrie A. Thompson10, Thomas M. Habermann10, Anne J. Novak10, Mark Liebow10, Thomas E. Witzig10, George J. Weiner20, Maryjean Schenk36, Patricia Hartge3, Anneclaire J. De Roos21, Anneclaire J. De Roos37, Wendy Cozen38, Degui Zhi2, Nicholas K. Akers1, Jacques Riby2, Jacques Riby1, Martyn T. Smith1, Mortimer J. Lacher4, Danylo J. Villano4, Ann Maria4, Eve Roman17, Eleanor Kane17, Rebecca D. Jackson39, Kari E. North40, W. Ryan Diver22, Jennifer Turner41, Bruce K. Armstrong23, Yolanda Benavente, Paolo Boffetta42, Paul Brennan43, Lenka Foretova, Marc Maynadie44, Anthony Staines45, James McKay43, Angela Brooks-Wilson46, Angela Brooks-Wilson25, Tongzhang Zheng26, Theodore R. Holford26, Saioa Chamosa, Rudolph Kaaks24, Rachel S. Kelly27, Rachel S. Kelly6, Bodil Ohlsson47, Ruth C. Travis48, Elisabete Weiderpass, Jacqueline Clavel29, Jacqueline Clavel28, Edward Giovannucci6, Peter Kraft6, Jarmo Virtamo49, Patrizio Mazza, Pierluigi Cocco31, Maria Grazia Ennas31, Brian C.-H. Chiu50, Joseph F. Fraumeni3, Alexandra Nieters51, Kenneth Offit4, Xifeng Wu19, James R. Cerhan10, Karin E. Smedby34, Stephen J. Chanock3, Nathaniel Rothman3 
University of California, Berkeley1, University of Alabama at Birmingham2, National Institutes of Health3, Memorial Sloan Kettering Cancer Center4, Utrecht University5, Harvard University6, University of New South Wales7, Genome Institute of Singapore8, University of California, San Francisco9, Mayo Clinic10, City of Hope National Medical Center11, Claude Bernard University Lyon 112, Centre national de la recherche scientifique13, Cancer Council Victoria14, University of Melbourne15, Statens Serum Institut16, University of York17, Stanford University18, University of Texas MD Anderson Cancer Center19, University of Iowa20, Fred Hutchinson Cancer Research Center21, American Cancer Society22, University of Sydney23, German Cancer Research Center24, University of British Columbia25, Yale University26, Imperial College London27, University of Paris-Sud28, French Institute of Health and Medical Research29, New York University30, University of Cagliari31, Westat32, Dalian Maritime University33, Karolinska Institutet34, Uppsala University35, Wayne State University36, Drexel University37, University of Southern California38, Ohio State University39, University of North Carolina at Chapel Hill40, Macquarie University41, Icahn School of Medicine at Mount Sinai42, International Agency for Research on Cancer43, University of Burgundy44, Dublin City University45, Simon Fraser University46, Lund University47, University of Oxford48, National Institute for Health and Welfare49, University of Chicago50, University of Freiburg51
TL;DR: The findings further expand the number of loci associated with FL and provide evidence that multiple common variants outside the HLA region make a significant contribution to FL risk.
Abstract: Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European ancestry. Five non-HLA loci were associated with FL risk: 11q23.3 (rs4938573, p = 5.79 × 10−20) near CXCR5; 11q24.3 (rs4937362, p = 6.76 × 10−11) near ETS1; 3q28 (rs6444305, p = 1.10 × 10−10) in LPP; 18q21.33 (rs17749561, p = 8.28 × 10−10) near BCL2; and 8q24.21 (rs13254990, p = 1.06 × 10−8) near PVT1. In an analysis of the HLA region, we identified four linked HLA-DRβ1 multiallelic amino acids at positions 11, 13, 28, and 30 that were associated with FL risk (pomnibus = 4.20 × 10−67 to 2.67 × 10−70). Additional independent signals included rs17203612 in HLA class II (odds ratio [ORper-allele] = 1.44; p = 4.59 × 10−16) and rs3130437 in HLA class I (ORper-allele = 1.23; p = 8.23 × 10−9). Our findings further expand the number of loci associated with FL and provide evidence that multiple common variants outside the HLA region make a significant contribution to FL risk.

93 citations

01 Jan 2015
TL;DR: The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age-sex groups, and countries as discussed by the authors.
Abstract: Background The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age–sex groups, and countries. The GBD can be used to generate summary measures such as disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) that make possible comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to sociodemographic development. Methods We used the published GBD 2013 data for age-specific mortality, years of life lost due to premature mortality (YLLs), and years lived with disability (YLDs) to calculate DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. We calculated HALE using the Sullivan method; 95% uncertainty intervals (UIs) represent uncertainty in age-specific death rates and YLDs per person for each country, age, sex, and year. We estimated DALYs for 306 causes for each country as the sum of YLLs and YLDs; 95% UIs represent uncertainty in YLL and YLD rates. We quantified patterns of the epidemiological transition with a composite indicator of sociodemographic status, which we constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population. We applied hierarchical regression to DALY rates by cause across countries to decompose variance related to the sociodemographic status variable, country, and time. Findings Worldwide, from 1990 to 2013, life expectancy at birth rose by 6·2 years (95% UI 5·6–6·6), from 65·3 years (65·0–65·6) in 1990 to 71·5 years (71·0–71·9) in 2013, HALE at birth rose by 5·4 years (4·9–5·8), from 56·9 years (54·5–59·1) to 62·3 years (59·7–64·8), total DALYs fell by 3·6% (0·3–7·4), and age-standardised DALY rates per 100 000 people fell by 26·7% (24·6–29·1). For communicable, maternal, neonatal, and nutritional disorders, global DALY numbers, crude rates, and age-standardised rates have all declined between 1990 and 2013, whereas for non–communicable diseases, global DALYs have been increasing, DALY rates have remained nearly constant, and age-standardised DALY rates declined during the same period. From 2005 to 2013, the number of DALYs increased for most specific non-communicable diseases, including cardiovascular diseases and neoplasms, in addition to dengue, food-borne trematodes, and leishmaniasis; DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischaemic heart disease, lower respiratory infections, cerebrovascular disease, low back and neck pain, and road injuries. Sociodemographic status explained more than 50% of the variance between countries and over time for diarrhoea, lower respiratory infections, and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies; other communicable, maternal, neonatal, and nutritional diseases; musculoskeletal disorders; and other non-communicable diseases. However, sociodemographic status explained less than 10% of the variance in DALY rates for cardiovascular diseases; chronic respiratory diseases; cirrhosis; diabetes, urogenital, blood, and endocrine diseases; unintentional injuries; and self-harm and interpersonal violence. Predictably, increased sociodemographic status was associated with a shift in burden from YLLs to YLDs, driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders, and mental and substance use disorders. In most country-specific estimates, the increase in life expectancy was greater than that in HALE. Leading causes of DALYs are highly variable across countries. Interpretation Global health is improving. Population growth and ageing have driven up numbers of DALYs, but crude rates have remained relatively constant, showing that progress in health does not mean fewer demands on health systems. The notion of an epidemiological transition—in which increasing sociodemographic status brings structured change in disease burden—is useful, but there is tremendous variation in burden of disease that is not associated with sociodemographic status. This further underscores the need for country-specific assessments of DALYs and HALE to appropriately inform health policy decisions and attendant actions.

86 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chair person) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK)

13,400 citations

Journal ArticleDOI
TL;DR: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Jiménez, ScD, SM Lori Chaffin Jordan,MD, PhD Suzanne E. Judd, PhD
Abstract: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Blaha, MD, MPH Stephanie E. Chiuve, ScD Mary Cushman, MD, MSc, FAHA Sandeep R. Das, MD, MPH, FAHA Rajat Deo, MD, MTR Sarah D. de Ferranti, MD, MPH James Floyd, MD, MS Myriam Fornage, PhD, FAHA Cathleen Gillespie, MS Carmen R. Isasi, MD, PhD, FAHA Monik C. Jiménez, ScD, SM Lori Chaffin Jordan, MD, PhD Suzanne E. Judd, PhD Daniel Lackland, DrPH, FAHA Judith H. Lichtman, PhD, MPH, FAHA Lynda Lisabeth, PhD, MPH, FAHA Simin Liu, MD, ScD, FAHA Chris T. Longenecker, MD Rachel H. Mackey, PhD, MPH, FAHA Kunihiro Matsushita, MD, PhD, FAHA Dariush Mozaffarian, MD, DrPH, FAHA Michael E. Mussolino, PhD, FAHA Khurram Nasir, MD, MPH, FAHA Robert W. Neumar, MD, PhD, FAHA Latha Palaniappan, MD, MS, FAHA Dilip K. Pandey, MBBS, MS, PhD, FAHA Ravi R. Thiagarajan, MD, MPH Mathew J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Rodriguez, MD, MPH, FAHA Gregory A. Roth, MD, MPH Wayne D. Rosamond, PhD, FAHA Comilla Sasson, MD, PhD, FAHA Amytis Towfighi, MD Connie W. Tsao, MD, MPH Melanie B. Turner, MPH Salim S. Virani, MD, PhD, FAHA Jenifer H. Voeks, PhD Joshua Z. Willey, MD, MS John T. Wilkins, MD Jason HY. Wu, MSc, PhD, FAHA Heather M. Alger, PhD Sally S. Wong, PhD, RD, CDN, FAHA Paul Muntner, PhD, MHSc On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics—2017 Update

7,190 citations

Journal ArticleDOI
TL;DR: Author(s): Writing Group Members; Mozaffarian, Dariush; Benjamin, Emelia J; Go, Alan S; Arnett, Donna K; Blaha, Michael J; Cushman, Mary; Das, Sandeep R; de Ferranti, Sarah; Despres, Jean-Pierre; Fullerton, Heather J; Howard, Virginia J; Huffman, Mark D; Isasi, Carmen R; Jimenez, Monik C; Judd, Suzanne
Abstract: Author(s): Writing Group Members; Mozaffarian, Dariush; Benjamin, Emelia J; Go, Alan S; Arnett, Donna K; Blaha, Michael J; Cushman, Mary; Das, Sandeep R; de Ferranti, Sarah; Despres, Jean-Pierre; Fullerton, Heather J; Howard, Virginia J; Huffman, Mark D; Isasi, Carmen R; Jimenez, Monik C; Judd, Suzanne E; Kissela, Brett M; Lichtman, Judith H; Lisabeth, Lynda D; Liu, Simin; Mackey, Rachel H; Magid, David J; McGuire, Darren K; Mohler, Emile R; Moy, Claudia S; Muntner, Paul; Mussolino, Michael E; Nasir, Khurram; Neumar, Robert W; Nichol, Graham; Palaniappan, Latha; Pandey, Dilip K; Reeves, Mathew J; Rodriguez, Carlos J; Rosamond, Wayne; Sorlie, Paul D; Stein, Joel; Towfighi, Amytis; Turan, Tanya N; Virani, Salim S; Woo, Daniel; Yeh, Robert W; Turner, Melanie B; American Heart Association Statistics Committee; Stroke Statistics Subcommittee

6,181 citations

Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as discussed by the authors provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

5,668 citations

Journal ArticleDOI
TL;DR: The Statistical Update represents the most up-to-date statistics related to heart disease, stroke, and the cardiovascular risk factors listed in the AHA's My Life Check - Life’s Simple 7, which include core health behaviors and health factors that contribute to cardiovascular health.
Abstract: Each chapter listed in the Table of Contents (see next page) is a hyperlink to that chapter. The reader clicks the chapter name to access that chapter. Each chapter listed here is a hyperlink. Click on the chapter name to be taken to that chapter. Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together in a single document the most up-to-date statistics related to heart disease, stroke, and the cardiovascular risk factors listed in the AHA’s My Life Check - Life’s Simple 7 (Figure1), which include core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure [BP], and glucose control) that contribute to cardiovascular health. The Statistical Update represents …

5,102 citations