scispace - formally typeset
Search or ask a question
Author

Qingquan Li

Bio: Qingquan Li is an academic researcher from Shenzhen University. The author has contributed to research in topics: Computer science & Feature (computer vision). The author has an hindex of 51, co-authored 424 publications receiving 10285 citations. Previous affiliations of Qingquan Li include Ontario Ministry of Natural Resources & Wuhan University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a comprehensive framework, the general image fusion (GIF) method, which makes it possible to categorize, compare, and evaluate the existing image fusion methods.
Abstract: There are many image fusion methods that can be used to produce high-resolution multispectral images from a high-resolution panchromatic image and low-resolution multispectral images Starting from the physical principle of image formation, this paper presents a comprehensive framework, the general image fusion (GIF) method, which makes it possible to categorize, compare, and evaluate the existing image fusion methods Using the GIF method, it is shown that the pixel values of the high-resolution multispectral images are determined by the corresponding pixel values of the low-resolution panchromatic image, the approximation of the high-resolution panchromatic image at the low-resolution level Many of the existing image fusion methods, including, but not limited to, intensity-hue-saturation, Brovey transform, principal component analysis, high-pass filtering, high-pass modulation, the a/spl grave/ trous algorithm-based wavelet transform, and multiresolution analysis-based intensity modulation (MRAIM), are evaluated and found to be particular cases of the GIF method The performance of each image fusion method is theoretically analyzed based on how the corresponding low-resolution panchromatic image is computed and how the modulation coefficients are set An experiment based on IKONOS images shows that there is consistency between the theoretical analysis and the experimental results and that the MRAIM method synthesizes the images closest to those the corresponding multisensors would observe at the high-resolution level

793 citations

Journal ArticleDOI
TL;DR: The proposed CrackTree method is evaluated on a collection of 206 real pavement images and the experimental results show that the proposed method achieves a better performance than several existing methods.

657 citations

Journal ArticleDOI
TL;DR: DeepCrack-an end-to-end trainable deep convolutional neural network for automatic crack detection by learning high-level features for crack representation and outperforms the current state-of-the-art methods.
Abstract: Cracks are typical line structures that are of interest in many computer-vision applications. In practice, many cracks, e.g., pavement cracks, show poor continuity and low contrast, which bring great challenges to image-based crack detection by using low-level features. In this paper, we propose DeepCrack-an end-to-end trainable deep convolutional neural network for automatic crack detection by learning high-level features for crack representation. In this method, multi-scale deep convolutional features learned at hierarchical convolutional stages are fused together to capture the line structures. More detailed representations are made in larger scale feature maps and more holistic representations are made in smaller scale feature maps. We build DeepCrack net on the encoder–decoder architecture of SegNet and pairwisely fuse the convolutional features generated in the encoder network and in the decoder network at the same scale. We train DeepCrack net on one crack dataset and evaluate it on three others. The experimental results demonstrate that DeepCrack achieves $F$ -measure over 0.87 on the three challenging datasets in average and outperforms the current state-of-the-art methods.

449 citations

Journal ArticleDOI
TL;DR: A novel real-time optimal-drivable-region and lane detection system for autonomous driving based on the fusion of light detection and ranging (LIDAR) and vision data and an optimal selection strategy for detecting the best drivable region is presented.
Abstract: Autonomous vehicle navigation is challenging since various types of road scenarios in real urban environments have to be considered, particularly when only perception sensors are used, without position information. This paper presents a novel real-time optimal-drivable-region and lane detection system for autonomous driving based on the fusion of light detection and ranging (LIDAR) and vision data. Our system uses a multisensory scheme to cover the most drivable areas in front of a vehicle. We propose a feature-level fusion method for the LIDAR and vision data and an optimal selection strategy for detecting the best drivable region. Then, a conditional lane detection algorithm is selectively executed depending on the automatic classification of the optimal drivable region. Our system successfully handles both structured and unstructured roads. The results of several experiments are provided to demonstrate the reliability, effectiveness, and robustness of the system.

318 citations

Journal ArticleDOI
TL;DR: The numbers of mobile phone users in a 24-hour period are used as a proxy of neighbourhood vibrancy and Point of Interest (POI) data is used to develop a series of mixed-use indicators that can better reflect the multifaceted, multidimensional characteristics of Mixed-use neighbourhoods.
Abstract: Although mixed use is an emerging strategy that has been widely accepted in urban planning for promoting neighbourhood vibrancy, there is no consensus on how to quantitatively measure the mix and the effects of mixed use on neighbourhood vibrancy. Shannon entropy, the most commonly used diversity measurement in assessing mixed use, has been found to be inadequate in measuring the multifaceted, multidimensional characteristics of mixed use. And lack of data also makes it difficult to find the relationship between mixed use and neighbourhood vibrancy. However, the recent availability of new sources including mobile phone data and Point of Interest POI data have made it possible to develop new indices of mixed use and neighbourhood vibrancy to analyse their relationships. Taking advantage of these emerging new data sources, this study used the numbers of mobile phone users in a 24-hour period as a proxy of neighbourhood vibrancy and used POIs from a navigation database to develop a series of mixed-use indicators that can better reflect the multifaceted, multidimensional characteristics of mixed-use neighbourhoods. The Hill numbers, a unified form of diversity measurement used in ecological literature that includes richness, entropy, and the Simpson index, are used to measure the degrees of mixed use. Using such fine-grained data sets and the Hill numbers allowed us to obtain better insights into the relationship between mixed use and neighbourhood vibrancy. Four models varying in POI measurements that reflect different dimensions of mixed use were presented. The results showed that either POI density or entropy can explain approximately 1% of neighbourhood vibrancy, while POI richness contributes significantly in improving neighbourhood vibrancy. The results also revealed that the entropy has limitations as a measure for representing mixed use and demonstrated the necessity of adopting a set of more appropriate measurements for mixed use. Increasing the number of POIs has limited power to improve neighbourhood vibrancy compared with encouraging the mixing of complementary POIs. These exploratory findings may be useful for adjusting mixed-use assessments and to help guide urban planning and neighbourhood design.

288 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations

01 Jan 2006

3,012 citations