scispace - formally typeset
Search or ask a question
Author

Qingyun Duan

Bio: Qingyun Duan is an academic researcher from Hohai University. The author has contributed to research in topics: Precipitation & Climate change. The author has an hindex of 62, co-authored 196 publications receiving 21640 citations. Previous affiliations of Qingyun Duan include University of Arizona & Beijing Normal University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a shuffled complex evolution (SCE-UA) method was proposed to solve the multiple optima problem for the conceptual rainfall runoff (CRR) model SIXPAR.
Abstract: The successful application of a conceptual rainfall-runoff (CRR) model depends on how well it is calibrated. Despite the popularity of CRR models, reports in the literature indicate that it is typically difficult, if not impossible, to obtain unique optimal values for their parameters using automatic calibration methods. Unless the best set of parameters associated with a given calibration data set can be found, it is difficult to determine how sensitive the parameter estimates (and hence the model forecasts) are to factors such as input and output data error, model error, quantity and quality of data, objective function used, and so on. Results are presented that establish clearly the nature of the multiple optima problem for the research CRR model SIXPAR. These results suggest that the CRR model optimization problem is more difficult than had been previously thought and that currently used local search procedures have a very low probability of successfully finding the optimal parameter sets. Next, the performance of three existing global search procedures are evaluated on the model SIXPAR. Finally, a powerful new global optimization procedure is presented, entitled the shuffled complex evolution (SCE-UA) method, which was able to consistently locate the global optimum of the SIXPAR model, and appears to be capable of efficiently and effectively solving the CRR model optimization problem.

2,988 citations

Journal ArticleDOI
TL;DR: This paper discusses five of these characteristics and presents a strategy for function optimization called the shuffled complex evolution (SCE) method, which promises to be robust, effective, and efficient for a broad class of problems.
Abstract: The degree of difficulty in solving a global optimization problem is in general dependent on the dimensionality of the problem and certain characteristics of the objective function. This paper discusses five of these characteristics and presents a strategy for function optimization called the shuffled complex evolution (SCE) method, which promises to be robust, effective, and efficient for a broad class of problems. The SCE method is based on a synthesis of four concepts that have proved successful for global optimization: (a) combination of probabilistic and deterministic approaches; (b) clustering; (c) systematic evolution of a complex of points spanning the space, in the direction of global improvement; and (d) competitive evolution. Two algorithms based on the SCE method are presented. These algorithms are tested by running 100 randomly initiated trials on eight test problems of differing difficulty. The performance of the two algorithms is compared to that of the controlled random search CRS2 method presented by Price (1983, 1987) and to a multistart algorithm based on the simplex method presented by Nelder and Mead (1965).

1,481 citations

Journal ArticleDOI
TL;DR: The essential concepts of the SCE-UA method are reviewed and the results of several experimental studies in which the National Weather Service river forecast system-soil moisture accounting model was calibrated using different algorithmic parameter setups are presented.

1,212 citations

Journal ArticleDOI
TL;DR: A real-time and retrospective North American Land Data Assimilation System (NLDAS) is presented in this article, which consists of four land models executing in parallel in uncoupled mode, common hourly surface forcing, and common streamflow routing: all using a 1/8° grid over the continental United States.
Abstract: [1] Results are presented from the multi-institution partnership to develop a real-time and retrospective North American Land Data Assimilation System (NLDAS). NLDAS consists of (1) four land models executing in parallel in uncoupled mode, (2) common hourly surface forcing, and (3) common streamflow routing: all using a 1/8° grid over the continental United States. The initiative is largely sponsored by the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP). As the overview for nine NLDAS papers, this paper describes and evaluates the 3-year NLDAS execution of 1 October 1996 to 30 September 1999, a period rich in observations for validation. The validation emphasizes (1) the land states, fluxes, and input forcing of four land models, (2) the application of new GCIP-sponsored products, and (3) a multiscale approach. The validation includes (1) mesoscale observing networks of land surface forcing, fluxes, and states, (2) regional snowpack measurements, (3) daily streamflow measurements, and (4) satellite-based retrievals of snow cover, land surface skin temperature (LST), and surface insolation. The results show substantial intermodel differences in surface evaporation and runoff (especially over nonsparse vegetation), soil moisture storage, snowpack, and LST. Owing to surprisingly large intermodel differences in aerodynamic conductance, intermodel differences in midday summer LST were unlike those expected from the intermodel differences in Bowen ratio. Last, anticipating future assimilation of LST, an NLDAS effort unique to this overview paper assesses geostationary-satellite-derived LST, determines the latter to be of good quality, and applies the latter to validate modeled LST.

1,192 citations

Journal ArticleDOI
TL;DR: In this article, the authors tested four land surface parameterization schemes against long-term (5 months) area-averaged observations over the 15 km × 15 km First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area.
Abstract: We tested four land surface parameterization schemes against long-term (5 months) area-averaged observations over the 15 km × 15 km First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area. This approach proved to be very beneficial to understanding the performance and limitations of different land surface models. These four surface models, embodying different complexities of the evaporation/hydrology treatment, included the traditional simple bucket model, the simple water balance (SWB) model, the Oregon State University (OSU) model, and the simplified Simple Biosphere (SSiB) model. The bucket model overestimated the evaporation during wet periods, and this resulted in unrealistically large negative sensible heat fluxes. The SWB model, despite its simple evaporation formulation, simulated well the evaporation during wet periods, but it tended to underestimate the evaporation during dry periods. Overall, the OSU model ably simulated the observed seasonal and diurnal variation in evaporation, soil moisture, sensible heat flux, and surface skin temperature. The more complex SSiB model performed similarly to the OSU model. A range of sensitivity experiments showed that some complexity in the canopy resistance scheme is important in reducing both the overestimation of evaporation during wet periods and underestimation during dry periods. Properly parameterizing not only the effect of soil moisture stress but also other canopy resistance factors, such as the vapor pressure deficit stress, is critical for canopy resistance evaluation. An overly simple canopy resistance that includes only soil moisture stress is unable to simulate observed surface evaporation during dry periods. Given a modestly comprehensive time-dependent canopy resistance treatment, a rather simple surface model such as the OSU model can provide good area-averaged surface heat fluxes for mesoscale atmospheric models.

1,043 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present guidelines for watershed model evaluation based on the review results and project-specific considerations, including single-event simulation, quality and quantity of measured data, model calibration procedure, evaluation time step, and project scope and magnitude.
Abstract: Watershed models are powerful tools for simulating the effect of watershed processes and management on soil and water resources. However, no comprehensive guidance is available to facilitate model evaluation in terms of the accuracy of simulated data compared to measured flow and constituent values. Thus, the objectives of this research were to: (1) determine recommended model evaluation techniques (statistical and graphical), (2) review reported ranges of values and corresponding performance ratings for the recommended statistics, and (3) establish guidelines for model evaluation based on the review results and project-specific considerations; all of these objectives focus on simulation of streamflow and transport of sediment and nutrients. These objectives were achieved with a thorough review of relevant literature on model application and recommended model evaluation methods. Based on this analysis, we recommend that three quantitative statistics, Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and ratio of the root mean square error to the standard deviation of measured data (RSR), in addition to the graphical techniques, be used in model evaluation. The following model evaluation performance ratings were established for each recommended statistic. In general, model simulation can be judged as satisfactory if NSE > 0.50 and RSR < 0.70, and if PBIAS + 25% for streamflow, PBIAS + 55% for sediment, and PBIAS + 70% for N and P. For PBIAS, constituent-specific performance ratings were determined based on uncertainty of measured data. Additional considerations related to model evaluation guidelines are also discussed. These considerations include: single-event simulation, quality and quantity of measured data, model calibration procedure, evaluation time step, and project scope and magnitude. A case study illustrating the application of the model evaluation guidelines is also provided.

9,386 citations

Journal ArticleDOI
TL;DR: In this paper, the authors address and document a number of issues related to the implementation of an advanced land surface-hydrology model in the Penn State-NCAR fifth-generation Mesoscale Model (MM5).
Abstract: This paper addresses and documents a number of issues related to the implementation of an advanced land surface–hydrology model in the Penn State–NCAR fifth-generation Mesoscale Model (MM5). The concept adopted here is that the land surface model should be able to provide not only reasonable diurnal variations of surface heat fluxes as surface boundary conditions for coupled models, but also correct seasonal evolutions of soil moisture in the context of a long-term data assimilation system. In a similar way to that in which the modified Oregon State University land surface model (LSM) has been used in the NCEP global and regional forecast models, it is implemented in MM5 to facilitate the initialization of soil moisture. Also, 1-km resolution vegetation and soil texture maps are introduced in the coupled MM5–LSM system to help identify vegetation/water/soil characteristics at fine scales and capture the feedback of these land surface forcings. A monthly varying climatological 0.15° × 0.15° green ...

4,405 citations

Journal ArticleDOI
TL;DR: The Global Land Data Assimilation System (GLDAS) as mentioned in this paper is an uncoupled land surface modeling system that drives multiple models, integrates a huge quantity of observation-based data, runs globally at high resolution (0.25°), and produces results in near-real time (typically within 48 h of the present).
Abstract: A Global Land Data Assimilation System (GLDAS) has been developed. Its purpose is to ingest satellite- and ground-based observational data products, using advanced land surface modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes. GLDAS is unique in that it is an uncoupled land surface modeling system that drives multiple models, integrates a huge quantity of observation-based data, runs globally at high resolution (0.25°), and produces results in near–real time (typically within 48 h of the present). GLDAS is also a test bed for innovative modeling and assimilation capabilities. A vegetation-based “tiling” approach is used to simulate subgrid-scale variability, with a 1-km global vegetation dataset as its basis. Soil and elevation parameters are based on high-resolution global datasets. Observation-based precipitation and downward radiation and output fields from the best available global coupled atmospheric data assimilation systems are employe...

3,857 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.

3,402 citations