scispace - formally typeset
Search or ask a question
Author

Qishi Liu

Bio: Qishi Liu is an academic researcher from Center for Excellence in Education. The author has contributed to research in topics: Acceptor & Organic solar cell. The author has an hindex of 7, co-authored 8 publications receiving 1611 citations. Previous affiliations of Qishi Liu include University of Science and Technology of China.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two phenazine copolymer donors P1 and P2 were developed for solar cells, and they gave a power conversion efficiency (PCE) of 15.14%, which was the highest value achieved by phenazine-donor-based solar cells to date.
Abstract: Two phenazine copolymer donors P1 and P2 were developed. P1 and P2 have deep highest occupied molecular orbital levels, enhanced light-harvesting capability and good hole mobility. Solar cells based on P2 and a nonfullerene acceptor, Y6, gave a power conversion efficiency (PCE) of 15.14%, which has been the highest value achieved by phenazine-donor-based solar cells to date.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results demonstrate that minimizing the alkyl chains to get suitable solubility and enhanced intermolecular packing has a great potential in further improving its photovoltaic performance.
Abstract: Optimizing the molecular structures of organic photovoltaic (OPV) materials is one of the most effective methods to boost power conversion efficiencies (PCEs). For an excellent molecular system with a certain conjugated skeleton, fine tuning the alky chains is of considerable significance to fully explore its photovoltaic potential. In this work, the optimization of alkyl chains is performed on a chlorinated nonfullerene acceptor (NFA) named BTP-4Cl-BO (a Y6 derivative) and very impressive photovoltaic parameters in OPV cells are obtained. To get more ordered intermolecular packing, the n-undecyl is shortened at the edge of BTP-eC11 to n-nonyl and n-heptyl. As a result, the NFAs of BTP-eC9 and BTP-eC7 are synthesized. The BTP-eC7 shows relatively poor solubility and thus limits its application in device fabrication. Fortunately, the BTP-eC9 possesses good solubility and, at the same time, enhanced electron transport property than BTP-eC11. Significantly, due to the simultaneously enhanced short-circuit current density and fill factor, the BTP-eC9-based single-junction OPV cells record a maximum PCE of 17.8% and get a certified value of 17.3%. These results demonstrate that minimizing the alkyl chains to get suitable solubility and enhanced intermolecular packing has a great potential in further improving its photovoltaic performance.

1,218 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors showed that branched alkyl chains in non-fullerene acceptors allow favorable morphology in the active layer, enabling a certified device efficiency of 17.32% with a fill factor of 81.5% for single-junction organic solar cells.
Abstract: Molecular design of non-fullerene acceptors is of vital importance for high-efficiency organic solar cells. The branched alkyl chain modification is often regarded as a counter-intuitive approach, as it may introduce an undesirable steric hindrance that reduces charge transport in non-fullerene acceptors. Here we show the design and synthesis of a highly efficient non-fullerene acceptor family by substituting the beta position of the thiophene unit on a Y6-based dithienothiophen[3,2-b]-pyrrolobenzothiadiazole core with branched alkyl chains. It was found that such a modification to a different alkyl chain length could completely change the molecular packing behaviour of non-fullerene acceptors, leading to improved structural order and charge transport in thin films. An unprecedented efficiency of 18.32% (certified value of 17.9%) with a fill factor of 81.5% is achieved for single-junction organic solar cells. This work reveals the importance of the branched alkyl chain topology in tuning the molecular packing and blend morphology, which leads to improved organic photovoltaic performance. Molecular design of acceptor and donor molecules has enabled major progress in organic photovoltaics. Li et al. show that branched alkyl chains in non-fullerene acceptors allow favourable morphology in the active layer, enabling a certified device efficiency of 17.9%.

966 citations

Journal ArticleDOI
TL;DR: In this paper, an active layer comprising a new widebandgap polymer donor named PBQx-TF and a new low-bandgap non-fullerene acceptor (NFA) named eC9-2Cl is rationally designed.
Abstract: Improving power conversion efficiency (PCE) is important for broadening the applications of organic photovoltaic (OPV) cells. Here, a maximum PCE of 19.0% (certified value of 18.7%) is achieved in single-junction OPV cells by combining material design with a ternary blending strategy. An active layer comprising a new wide-bandgap polymer donor named PBQx-TF and a new low-bandgap non-fullerene acceptor (NFA) named eC9-2Cl is rationally designed. With optimized light utilization, the resulting binary cell exhibits a good PCE of 17.7%. An NFA F-BTA3 is then added to the active layer as a third component to simultaneously improve the photovoltaic parameters. The improved light unitization, cascaded energy level alignment, and enhanced intermolecular packing result in open-circuit voltage of 0.879 V, short-circuit current density of 26.7 mA cm-2 , and fill factor of 0.809. This study demonstrates that further improvement of PCEs of high-performance OPV cells requires fine tuning of the electronic structures and morphologies of the active layers.

784 citations