scispace - formally typeset
Search or ask a question

Showing papers by "Quanan Zheng published in 2021"



Journal ArticleDOI
TL;DR: In this article, hourly sea surface currents observed by the Taiwan Coastal Ocean Dynamics Applications Radar (CODAR) system from 2015 to 2019 were analyzed by the empirical orthogonal function (EOF) analysis to reveal the characteristics of the SEA surface currents around Taiwan Island.
Abstract: Sea surface currents observed by high-frequency (HF) radars have been widely used in ocean circulation research. In this study, hourly sea surface currents observed by the Taiwan Coastal Ocean Dynamics Applications Radar (CODAR) system from 2015 to 2019 were analyzed by the empirical orthogonal function (EOF) analysis to reveal the characteristics of the sea surface currents around Taiwan Island. The study area is divided into two regions, the Kuroshio region east of Taiwan Island and the Taiwan Strait west of Taiwan Island. In the Kuroshio region, the first EOF mode shows that the Kuroshio is characterized by higher current speeds with greater variability in summer. The second and third EOF modes present a dipole eddy pair and single eddy impingement on the Kuroshio during different periods. The seasonal variation of the dipole eddy pair indicates that the cyclonic/anticyclonic eddy on the north/south side appears more frequently in summer. Single eddy impingement occurs at multiple periods, including daily, intraseasonal, interseasonal, and annual periods. For the Taiwan Strait, the first EOF mode displays the tide signals. The tides enter the Taiwan Strait from the north and south, forming strong sea surface currents around the northern tip of Taiwan Island and the Penghu Archipelago. The second EOF mode exhibits the seasonal changes of the sea surface currents driven by the monsoon winds. The sea surface currents in the northern Taiwan Strait are relatively strong, possibly due to the narrow and shallow terrain there. The high spatiotemporal resolution of sea surface currents derived from CODAR observations provide more detailed characteristics of sea surface circulation around Taiwan Island.

9 citations


Journal ArticleDOI
TL;DR: In this paper, the behavior of ocean color elements in response to a tropical cyclone in the case of typhoon Mangkhut (2018), which passed over the northern South China Sea (NSCS) on 16 September 2018, using satellite multi-sensor observations, Argo float profiles, and tidal gauge sea level data.
Abstract: The ocean color elements refer to total suspended sediment (TSS) and chlorophyll-a (Chl-a), which are important parameters for the marine ecological environment. This study aims to examine the behavior of ocean color elements in response to a tropical cyclone in the case of typhoon Mangkhut (2018), which passed over the northern South China Sea (NSCS) on 16 September 2018, using satellite multi-sensor observations, Argo float profiles, and tidal gauge sea level data. The results indicate that typhoon Mangkhut (2018) resulted in TSS and Chl-a concentrations increasing, with the spatial and timing behavior different in the offshore, shelf, and basin areas. In the offshore area from the coast to isobath 50 m, the mean TSS concentration, i.e., CTSS, reached 13.9 mg/L on 18 September 2018, two days after typhoon landfall, against about 3.5 mg/L before typhoon landfall. In the shelf area with depths from 50 m to 100 m, the mean CTSS reached 2.5 mg/L, against about 0.8 mg/L before typhoon landfall. In the basin area with depths of 100 m and beyond, the mean CTSS had only a little fluctuation. On the other hand, in the offshore area, the mean Chl-a concentration, i.e., CChl-a, was 7.3 mg/m3 on 21 September, five days after typhoon landfall, against 2.4 mg/m3 as the monthly mean value. Furthermore, TSS concentrations favorable for Chl-a bloom range from 6 to 7 mg/L in this area. In the shelf area, the mean CChl-a increased from 0.2 mg/m3 to 0.6 mg/m3 in two days. In the basin area, the CChl-a increased from 0.1 mg/m3 to 0.2 mg/m3 during typhoon passage. Concurrent dynamic condition analysis results indicate that, in the offshore area, typhoon-induced solitary continental waves may play a dominant role in determining the spatial distribution features of the TSS originating from the Pearl River runoff. The Chl-a bloom delayed rather than concurrently occurred with the terrigenous nutrient peak, which is attributed to the nonlinear relation between CChl-a and CTSS. In the shelf and basin areas, typhoon-enhanced vertical mixing and upwelling may play dominant roles in determining the spatiotemporal behavior of the TSS and the Chl-a.

7 citations



Journal ArticleDOI
TL;DR: In this article, the authors analyzed in-situ Argo floats measurements, data-assimilated HYCOM/NCODA reanalysis, and the longer-term (1961-2010) variations of Ocean Reanalysis System 4 (ORAS4) based barrier layer (BL) in the TC main development region (MDR) to characterize the BL in the western North Pacific (WNP) for different temporal scales and to understand its role in resisting TC induced sea surface cooling.
Abstract: The barrier layer (BL) is a layer of water separating the thermocline from the density mixed layer in the upper ocean, which has the capability of reducing the negative feedback effect caused by tropical cyclone (TC) acting on the upper ocean and back on the TC itself. This study analyzed in-situ Argo floats measurements, data-assimilated HYCOM/NCODA reanalysis, and the longer-term (1961–2010) variations of Ocean Reanalysis System 4 (ORAS4) based BL in the TC main development region (MDR) to characterize the BL in the western North Pacific (WNP) for different temporal scales and to understand its role in resisting TC induced sea surface cooling. First, the result indicates that the effect of BL on TC enhancement in the MDR of WNP might be overestimated. Further analysis based on partial correlation shows that the BL plays a key role in resisting the cooling response only while BL is strong (BL thickness ≥ 5 m) and TC wind forcing is weak. Meanwhile, the distribution of BL demonstrates markedly the mesoscale characteristic. BL with thickness 0–5 m occupies the highest proportion (~67.55%), while thicker BL (BL thickness (BLT) larger than 5 m) takes up about 25–30%. Besides, there are ~3% with BL thicker than 30 m. For life length, BLT with 0–5 m is limited to 5 days, while BL with thickness more than 30 m can persist for more than 30 days. The scenario is attributed to diverse processes that result in different characteristic temporal scales of BL. Additionally, the analysis of coverage region and average BLT in the recent decade shows a serious situation: both the spatial coverage and BLT increase sharply from 2001 to 2010, which implies that TC–BL interactions might occur more frequently and more vigorously in future if the changing trend of BL remains unchanged.

4 citations


Journal ArticleDOI
TL;DR: In this article, the authors found limited chlorophyll-a responses to three late autumn typhoons (typhoon Nesat, Mujigae and Khanun) in the northwestern South China Sea (NWSCS) using satellite observations.
Abstract: Strong typhoon winds enhance turbulent mixing, which induces sediment to resuspend and to promote chlorophyll-a (Chl-a) blooms in the continental shelf areas. In this study, we find limited Chl-a responses to three late autumn typhoons (typhoon Nesat, Mujigae and Khanun) in the northwestern South China Sea (NWSCS) using satellite observations. In climatology, the Chl-a and total suspended sediment (TSS) concentrations are high all year round with higher value in autumn in the offshore area of the NWSCS. After the typhoon passage, the Chl-a concentration increases slightly (23%), while even TSS enhances by 280% on the wide continental shelf of the NWSCS. However, in the southern area, located approximately 100 km from the typhoon tracks, both TSS and Chl-a concentrations increase 160% and 150% after typhoon passage, respectively. In the deeper area, the increased TSS concentration is responsible for the considerable increase of the Chl-a. An empirical analysis is applied to the data, which reveals the TSS and Chl-a processes during typhoon events. The results of this study suggest a different mechanism for Chl-a concentration increase and thus contribute toward further evaluation of typhoon-induced biological responses.

4 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of the Kuroshio intrusion on the Luzon Strait were investigated. But, the authors focused on the effect of KI on the regional atmospheric and weather variations.
Abstract: The Kuroshio Current has its origin in the northwestern Pacific, flowing northward to the east of Taiwan and the northern part of Luzon Island. As the Kuroshio Current flows northward, it quasi-periodically intrudes (hereafter referred to as Kuroshio intrusion (KI)) into the northern South China Sea (SCS) basin through the Luzon Strait. Despite the complex generation mechanisms of KI, the purpose of this study is to improve our understanding of the effects of KI through the Luzon Strait on the regional atmospheric and weather variations. Long-term multiple satellite observations, including absolute dynamic topography, absolute geostrophic currents, sea surface winds by ASCAT, multi-scale ultra-high resolution sea surface temperature (MURSST) level-four analysis, and research-quality three-hourly TRMM multi-satellite precipitation analysis (TMPA), was used to systematically examine the aforementioned scientific problem. Analysis indicates that the KI is interlinked with the consequential anomalous precipitation off southwestern Taiwan. This anomalous precipitation would lead to ~560 million tons of freshwater influx during each KI event. Subsequently, independent moisture budget analysis suggests that moisture, mainly from vertical advection, is the possible source of the precipitation anomaly. Additionally, a bulk formula analysis was applied to understand how KI can trigger the precipitation anomaly through vertical advection of moisture without causing an evident change in the low-level flows. These new research findings might reconcile the divisiveness on why winds are not showing a synchronous response during the KI and consequential anomalous precipitation events.

2 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated variations in current structure, nutrient distribution, and transports disturbed by a typhoon in a typical coastal upwelling zone east of Hainan Island in the northwestern South China Sea.
Abstract: Using cruise observations before and after the typhoon Chebi in August 2013 and those without the typhoon in July 2012, this study investigates variations in current structure, nutrient distribution, and transports disturbed by a typhoon in a typical coastal upwelling zone east of Hainan Island in the northwestern South China Sea. The results show that along-shore northeastward flow dominates the coastal ocean with a volume transport of 0.64 × 106 m3/s in the case without the typhoon. The flow reversed southwestward, with its volume transport halved before the typhoon passage. After the typhoon passage, the flow returned back northeastward except the upper layer in waters deeper than 50 m and the total volume transport decreased to 0.10 × 106 m3/s. For the cross-shelf component, the flow kept shoreward, while transports crossing the 50 m isobath decreased from 0.25, 0.12 to 0.06 × 106 m3/s in the case without the typhoon as well as before and after typhoon passage, respectively. For the along-shore/cross-shelf nutrient transports, SiO32− has the largest value of 866.13/632.74 μmol/s per unit area, NO3− half of that, and PO43− and NO2− one order smaller in the offshore water without the typhoon. The values dramatically decreased to about one-third for SiO32−, NO3−, and PO43− after the typhoon, but changed little for NO2−. The disturbed wind field and associated Ekman flow and upwelling process may explain the variations in the current and nutrient transports after the typhoon.

2 citations



Journal ArticleDOI
TL;DR: In this article, a numerical wind-driven hydrodynamics model was designed using the 3D Finite Volume Community Ocean Model (FVCOM) to examine whether the lake water level change was due to the natural oscillations inside the lake (or seiche).
Abstract: Aimed at the explanation of clear tidal signal and storm surge signals in a closed inland lake near the coast (the Huguangyan Lake), this work uses a combined approach with observations and model experiments. Huguangyan Lake is a closed inland freshwater coneless volcanic crater lake near the coast in tropical southern China, less than 5 km from an estuary. It has a diameter of about 1.5 km and relatively deep water of up to 20 m. Bottom pressure was measured from an acoustic Doppler current profiler (ADCP) for 10 days in September 2018 and 10 days in January 2019. The observations encompass the period of Typhoon Mangkhut, which passed the region when it made its landfall. The time series demonstrate clear tidal and subtidal signals. The tidal signal remains even if we exclude the barometric pressure effect. Interestingly, the lake has no surface connection with the ocean. The astronomical tide has an amplitude of about 2 cm. The major tidal signals include the principal solar semidiurnal (S2) and lunisolar (K1) constituents. During the passage of Typhoon Mangkhut, the water level variability inside the lake increased by an order of magnitude (>0.3 m). To examine whether the lake water level change was due to the natural oscillations inside the lake (or seiche), a numerical wind-driven hydrodynamics model was designed using the 3-D Finite Volume Community Ocean Model (FVCOM). The results show that a small first-order seiche can be generated, but only with a time scale of minutes and with a magnitude much smaller than the observed surface elevation changes. This excludes any measurable seiche and the observed surface elevation change inside the lake cannot be wind-driven. Moreover, tides inside the lake are not generated by tidal potential, as the lake is too small for having a locally generated tide. The main result of our study has therefore excluded the local tidal-generating force, wind-driven seiche, and barometric effect, as possible causes of the lake oscillation which has tidal and subtidal signals. The subtidal variation is at least one order of magnitude greater than tides inside the lake and is caused by weather-induced overall coastal ocean water level oscillations transmitted into the lake through groundwater connection. All these lead to the major conclusion that the lake is connected to the coastal ocean through groundwater.

1 citations