scispace - formally typeset
Search or ask a question
Author

Quanan Zheng

Bio: Quanan Zheng is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Sea surface temperature & Internal wave. The author has an hindex of 34, co-authored 163 publications receiving 20319 citations. Previous affiliations of Quanan Zheng include National Science Foundation & University of Delaware.


Papers
More filters
Journal ArticleDOI
TL;DR: The present model is used to explain the radar signatures of a rainfall event simultaneously observed by C-band ENVISAT (European satellite) Advanced Synthetic Aperture Radar (ASAR) and ground-based weather radar in the Northwest Pacific.
Abstract: In this paper, a model of radar backscattering from rain-generated stalks on the ocean surface in a rain field is proposed. In the model, stalks in the rain field form an array and are considered as finite water cylinders standing out of an infinite water surface. The radar backscattering coefficient from these stalks is derived. Both incoherent and coherent backscattering mechanisms from the stalks are considered. The model shows that the radar backscattering intensity is a function of the average distance between stalks on the water surface, the radar wave frequency, and the incident angle of radar waves. For light/moderate rain (at low rain rates), the radar backscattering intensity increases with increasing rain rate. For heavy rain (at high rain rates), the radar backscattering intensity decreases with increasing rain rate. The maximum radar backscattering intensity occurs at a rain rate that depends on the radar wave frequency and the incident angle of radar waves. The present model is used to explain the radar signatures of a rainfall event simultaneously observed by C-band ENVISAT (European satellite) Advanced Synthetic Aperture Radar (ASAR) and ground-based weather radar in the Northwest Pacific. The relationship between the radar return intensity extracted from the C-band ASAR image and the rain rate obtained from ground-based weather radar is in agreement with the model’s calculation. Also, the air–sea interface in rain fields and its effects on the attenuation of radar backscattering are experimentally studied in the laboratory.

9 citations

Journal ArticleDOI
TL;DR: In this article, hourly sea surface currents observed by the Taiwan Coastal Ocean Dynamics Applications Radar (CODAR) system from 2015 to 2019 were analyzed by the empirical orthogonal function (EOF) analysis to reveal the characteristics of the SEA surface currents around Taiwan Island.
Abstract: Sea surface currents observed by high-frequency (HF) radars have been widely used in ocean circulation research. In this study, hourly sea surface currents observed by the Taiwan Coastal Ocean Dynamics Applications Radar (CODAR) system from 2015 to 2019 were analyzed by the empirical orthogonal function (EOF) analysis to reveal the characteristics of the sea surface currents around Taiwan Island. The study area is divided into two regions, the Kuroshio region east of Taiwan Island and the Taiwan Strait west of Taiwan Island. In the Kuroshio region, the first EOF mode shows that the Kuroshio is characterized by higher current speeds with greater variability in summer. The second and third EOF modes present a dipole eddy pair and single eddy impingement on the Kuroshio during different periods. The seasonal variation of the dipole eddy pair indicates that the cyclonic/anticyclonic eddy on the north/south side appears more frequently in summer. Single eddy impingement occurs at multiple periods, including daily, intraseasonal, interseasonal, and annual periods. For the Taiwan Strait, the first EOF mode displays the tide signals. The tides enter the Taiwan Strait from the north and south, forming strong sea surface currents around the northern tip of Taiwan Island and the Penghu Archipelago. The second EOF mode exhibits the seasonal changes of the sea surface currents driven by the monsoon winds. The sea surface currents in the northern Taiwan Strait are relatively strong, possibly due to the narrow and shallow terrain there. The high spatiotemporal resolution of sea surface currents derived from CODAR observations provide more detailed characteristics of sea surface circulation around Taiwan Island.

9 citations

Journal ArticleDOI
TL;DR: In this article, a vessel-based acoustic Doppler current profiler (ADCP) was used to evaluate the vertical motion over bathymetric changes in tidal channels and assess the validity of the hydrostatic approximation.
Abstract: Hydrostatic condition is a common assumption in tidal and subtidal motions in oceans and estuaries.. Theories with this assumption have been largely successful. However, there is no definite criteria separating the hydrostatic from the non-hydrostatic regimes in real applications because real problems often times have multiple scales. With increased refinement of high resolution numerical models encompassing smaller and smaller spatial scales, the need for non-hydrostatic models is increasing. To evaluate the vertical motion over bathymetric changes in tidal channels and assess the validity of the hydrostatic approximation, we conducted observations using a vessel-based acoustic Doppler current profiler (ADCP). Observations were made along a straight channel 18 times over two scour holes of 25 m deep, separated by 330 m, in and out of an otherwise flat 8 m deep tidal pass leading to the Lake Pontchartrain over a time period of 8 hours covering part of the diurnal tidal cycle. Out of the 18 passages over the scour holes, 11 of them showed strong upwelling and downwelling which resulted in the breakdown of hydrostatic condition. The maximum observed vertical velocity was ~ 0.35 m/s, a high value in a tidal channel, and the estimated vertical acceleration reached a high value of 1.76×10-2 m/s2. Analysis demonstrated that the barotropic non-hydrostatic acceleration was dominant. The cause of the non-hydrostatic flow was the that over steep slopes. This demonstrates that in such a system, the bathymetric variation can lead to the breakdown of hydrostatic conditions. Models with hydrostatic restrictions will not be able to correctly capture the dynamics in such a system with significant bathymetric variations particularly during strong tidal currents.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a new method is developed for estimating the sensible heat flux using satellite observations under unstable conditions, where the air-sea temperature difference is related to the atmospheric convergence.
Abstract: It has been difficult to estimate the sensible heat flux at the air‐sea interface using satellite data because of the difficulty in remotely observing the sea level air temperature. In this study, a new method is developed for estimating the sensible heat flux using satellite observations under unstable conditions. The basic idea of the method is that the air‐sea temperature difference is related to the atmospheric convergence. Employed data include the wind convergence, sea level humidity, and sea surface temperature. These parameters can be derived from the satellite wind vectors, Special Sensor Microwave Imager (SSM/I) precipitable water, and Advanced Very High Resolution Radiometer (AVHRR) observations, respectively. The authors selected a region east of Japan as the test area where the atmospheric convergence appears all year. Comparison between the heat fluxes derived from the satellite data and from the National Centers for Environmental Prediction (NCEP) data suggests that the rms difference between the two kinds of sensible heat fluxes has low values in the sea area east of Japan with a minimum of 10.0 W m22. The time series of the two kinds of sensible heat fluxes at 10 locations in the area are in agreement, with rms difference ranging between 10.0 and 14.1 W m22 and correlation coefficient being higher than 0.7. In addition, the National Aeronautics and Space Administration (NASA) Goddard SatelliteBased Surface Turbulent Flux (GSSTF) was used for a further comparison. The low-rms region with high correlation coefficient (.0.7) was also found in the region east of Japan with a minimum of 12.2 W m22. Considering the nonlinearity in calculation of the sensible monthly means, the authors believe that the comparison with GSSTF is consistent with that with NCEP data.

9 citations

Journal ArticleDOI
TL;DR: In this article, the authors used satellite images of submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation to derive analytical solutions of the secondary circulation.
Abstract: This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation. Solving the disturbance governing equations of the shear-flow yields the analytical solutions of the secondary circulation. The solutions indicate that a flow with a parabolic horizontal velocity shear and a sinusoidal vertical velocity shear will induce a pair of vortexes with opposite signs distributed symmetrically on the two sides of central line of a rectangular canal. In the case of the presence of surface Ekman layer with the direction of Ekman current opposite to (coincident with) the mean flow, the two vortexes converge (diverge) at the central line of canal in the upper layer and form a surface current convergent (divergent) zone along the central line of the canal. In the case of the absence of surface Ekman layer, there is no convergent (divergent) zone formed over the sea surface. The theoretical results are applied to interpretations of three convergent cases, one divergent case and statistics of 27 cases of satellite observations in the submerged sand ridge region of the Liaodong Shoal in the Bohai Sea. We found that the long, finger-like, bright patterns on SAR images are corresponding to the locations of the canals (or tidal channels) formed by two adjacent sand ridges rather than the sand ridges themselves.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new method for analysing nonlinear and nonstationary data has been developed, which is the key part of the method is the empirical mode decomposition method with which any complicated data set can be decoded.
Abstract: A new method for analysing nonlinear and non-stationary data has been developed. The key part of the method is the empirical mode decomposition method with which any complicated data set can be dec...

18,956 citations

Journal ArticleDOI
TL;DR: The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF.
Abstract: A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturall...

6,437 citations

Journal ArticleDOI
TL;DR: This work proposes an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently and is a generalization of the classic Wiener filter into multiple, adaptive bands.
Abstract: During the late 1990s, Huang introduced the algorithm called Empirical Mode Decomposition, which is widely used today to recursively decompose a signal into different modes of unknown but separate spectral bands. EMD is known for limitations like sensitivity to noise and sampling. These limitations could only partially be addressed by more mathematical attempts to this decomposition problem, like synchrosqueezing, empirical wavelets or recursive variational decomposition. Here, we propose an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently. The model looks for an ensemble of modes and their respective center frequencies, such that the modes collectively reproduce the input signal, while each being smooth after demodulation into baseband. In Fourier domain, this corresponds to a narrow-band prior. We show important relations to Wiener filter denoising. Indeed, the proposed method is a generalization of the classic Wiener filter into multiple, adaptive bands. Our model provides a solution to the decomposition problem that is theoretically well founded and still easy to understand. The variational model is efficiently optimized using an alternating direction method of multipliers approach. Preliminary results show attractive performance with respect to existing mode decomposition models. In particular, our proposed model is much more robust to sampling and noise. Finally, we show promising practical decomposition results on a series of artificial and real data.

4,111 citations

Journal ArticleDOI
TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Abstract: One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic...

4,044 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations