scispace - formally typeset
Search or ask a question
Author

Quanan Zheng

Bio: Quanan Zheng is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Sea surface temperature & Internal wave. The author has an hindex of 34, co-authored 163 publications receiving 20319 citations. Previous affiliations of Quanan Zheng include National Science Foundation & University of Delaware.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple theoretical model using the standard shallow water geophysical fluid dynamic equation was proposed to model intermediate-scale shear waves, which are the horizontal wavy movement along the shear interface having a typical wavelength of 100 km.
Abstract: Intermediate-scale shear waves are ubiquitous in the world's ocean. They are the horizontal wavy movement along the shear interface having a typical wavelength of 100 km. Based on a simple theoretical model using the standard shallow water geophysical fluid dynamic equation, we found that these phenomena can be modeled by a kind of stable shear wave triggered by external forces, such as wind stress. Our results indicate that their amplitudes should be directly proportional to the wind stress, and the relationship between the phase speeds of the waves and their wave numbers can be expressed by a parabolic equation. Comparisons between theoretical results and data derived from the satellite IR images show good agreement.

6 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive investigation of the typhoon induced upper ocean processes and responses off northeastern Taiwan was conducted using the Regional Ocean Modeling System, the upper ocean responses of all typhoons striking Taiwan between 2005 and 2013 were simulated.

6 citations

Journal ArticleDOI
TL;DR: In this paper, the water sources of the Maluku Sea and the Halmahera Sea are diagnosed at seasonal and interannual timescales and at different vertical layers, using the state-of-the-art simulations of the Ocean General Circulation Model (OGCM) for Earth Simulator (OFES).
Abstract: So far, large uncertainties of the Indonesian throughflow (ITF) reside in the eastern Indonesian seas, such as the Maluku Sea and the Halmahera Sea. In this study, the water sources of the Maluku Sea and the Halmahera Sea are diagnosed at seasonal and interannual timescales and at different vertical layers, using the state-of-the-art simulations of the Ocean General Circulation Model (OGCM) for Earth Simulator (OFES). Asian monsoon leaves clear seasonal footprints on the eastern Indonesian seas. Consequently, the subsurface waters (around 24.5σθ and at ~150 m) in both the Maluku Sea and the Halmahera Sea stem from the South Pacific (SP) during winter monsoon, but during summer monsoon the Maluku Sea is from the North Pacific (NP), and the Halmahera Sea is a mixture of waters originating from the NP and the SP. The monsoon impact decreases with depth, so that in the Maluku Sea, the intermediate water (around 26.8σθ and at ~480 m) is always from the northern Banda Sea and the Halmahera Sea water is mainly from the SP in winter and the Banda Sea in summer. The deep waters (around 27.2σθ and at ~1 040 m) in both seas are from the SP, with weak seasonal variability. At the interannual timescale, the subsurface water in the Maluku Sea originates from the NP/SP during El Nino/La Nina, while the subsurface water in the Halmahera Sea always originates from the SP. Similar to the seasonal variability, the intermediate water in Maluku Sea mainly comes from the Banda Sea and the Halmahera Sea always originates from the SP. The deep waters in both seas are from the SP. Our findings are helpful for drawing a comprehensive picture of the water properties in the Indonesian seas and will contribute to a better understanding of the ocean-atmosphere interaction over the maritime continent.

6 citations

01 Jan 2003
TL;DR: Quanan Zheng and Zhongxiang Zhao at the University of Delaware, Newark, Delaware, USA as mentioned in this paper, and Pablo Clemente-Colon at NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Abstract: Quanan Zheng College of Marine Studies, University of Delaware, Newark, Delaware, USA Samuel S. P. Shen Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada Yeli Yuan The First Institute of Oceanography, SOA, Qingdao, Shandong, China Norden E. Huang Ocean &Ice Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA Victor Klemas and Xiao-Hai Yan College of Marine Studies, University of Delaware, Newark, Delaware, USA Fengyan Shi Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark, Delaware, USA Xuebin Zhang and Zhongxiang Zhao College of Marine Studies, University of Delaware, Newark, Delaware, USA Xiaofeng Li and Pablo Clemente-Colon NOAA/NESDIS, E/RA3, Room 102, WWBG, 5200 Auth Road, Camp Springs, Maryland, USA

5 citations

Journal ArticleDOI
TL;DR: On the basis of the satellite maps of sea level anomaly (MSLA) data and in situ tidal gauge sea level data, correlation analysis and empirical mode decomposition (EMD) are employed to investigate the applicability of MSLA data, sea level correlation, long-term sea level variability (SLV) trend and its geographic distribution in the South China Sea (SCS) as mentioned in this paper.
Abstract: On the basis of the satellite maps of sea level anomaly (MSLA) data and in situ tidal gauge sea level data, correlation analysis and empirical mode decomposition (EMD) are employed to investigate the applicability of MSLA data, sea level correlation, long-term sea level variability (SLV) trend, sea level rise (SLR) rate and its geographic distribution in the South China Sea (SCS). The findings show that for Dongfang Station, Haikou Station, Shanwei Station and Zhapo Station, the minimum correlation coefficient between the closest MSLA grid point and tidal station is 0.61. This suggests that the satellite altimeter MSLA data are effective to observe the coastal SLV in the SCS. On the monthly scale, coastal SLV in the western and northern part of SCS are highly associated with coastal currents. On the seasonal scale, SLV of the coastal area in the western part of the SCS is still strongly influenced by the coastal current system in summer and winter. The Pacific change can affect the SCS mainly in winter rather than summer and the affected area mostly concentrated in the northeastern and eastern parts of the SCS. Overall, the average SLR in the SCS is 90.8 mm with a rising rate of (5.0±0.4) mm/a during 1993–2010. The SLR rate from the southern Luzon Strait through the Huangyan Seamount area to the Xisha Islands area is higher than that of other areas of the SCS.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new method for analysing nonlinear and nonstationary data has been developed, which is the key part of the method is the empirical mode decomposition method with which any complicated data set can be decoded.
Abstract: A new method for analysing nonlinear and non-stationary data has been developed. The key part of the method is the empirical mode decomposition method with which any complicated data set can be dec...

18,956 citations

Journal ArticleDOI
TL;DR: The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF.
Abstract: A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturall...

6,437 citations

Journal ArticleDOI
TL;DR: This work proposes an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently and is a generalization of the classic Wiener filter into multiple, adaptive bands.
Abstract: During the late 1990s, Huang introduced the algorithm called Empirical Mode Decomposition, which is widely used today to recursively decompose a signal into different modes of unknown but separate spectral bands. EMD is known for limitations like sensitivity to noise and sampling. These limitations could only partially be addressed by more mathematical attempts to this decomposition problem, like synchrosqueezing, empirical wavelets or recursive variational decomposition. Here, we propose an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently. The model looks for an ensemble of modes and their respective center frequencies, such that the modes collectively reproduce the input signal, while each being smooth after demodulation into baseband. In Fourier domain, this corresponds to a narrow-band prior. We show important relations to Wiener filter denoising. Indeed, the proposed method is a generalization of the classic Wiener filter into multiple, adaptive bands. Our model provides a solution to the decomposition problem that is theoretically well founded and still easy to understand. The variational model is efficiently optimized using an alternating direction method of multipliers approach. Preliminary results show attractive performance with respect to existing mode decomposition models. In particular, our proposed model is much more robust to sampling and noise. Finally, we show promising practical decomposition results on a series of artificial and real data.

4,111 citations

Journal ArticleDOI
TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Abstract: One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic...

4,044 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations