scispace - formally typeset
Search or ask a question
Author

Quanan Zheng

Bio: Quanan Zheng is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Sea surface temperature & Internal wave. The author has an hindex of 34, co-authored 163 publications receiving 20319 citations. Previous affiliations of Quanan Zheng include National Science Foundation & University of Delaware.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors investigated the variations in flow patterns in the northern Taiwan Strait in summer using high-frequency (HF) radar measurements, satellite-tracked drifter trajectories and numerical models.
Abstract: This study investigates the variations in flow patterns in the northern Taiwan Strait in summer using high-frequency (HF) radar measurements, satellite-tracked drifter trajectories and numerical models. There is an obvious interaction between intra-diurnal tides and ocean currents in northwestern Taiwan. When the tide changes between high tide and low tide, the change in direction of the nearshore flow occurs before the change in the offshore flow. Drifter trajectories show that there are three different drifting paths in the Taiwan Strait in summer. One path is along the west coast of Taiwan from the southwest coast to the northeast coast. Another path is the same as the first one but leads northward to the East China Sea instead of eastward to the northeast coast of Taiwan. The other path exists along the west coast of Taiwan, some distance out, after being deflected by the bottom ridge. The regional ocean modeling system model was used in this study to clarify the influencing factors that lead to these three paths. The results of multiple simulations and HF radar data indicate that the bifurcation of the first two drift paths in northwestern Taiwan is caused by ebb and flood tide transitions. The different routes of the latter two paths are due to the significant speed difference between the nearshore current and the offshore current approximately 45 km from the coast.

2 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of the Kuroshio intrusion on the Luzon Strait were investigated. But, the authors focused on the effect of KI on the regional atmospheric and weather variations.
Abstract: The Kuroshio Current has its origin in the northwestern Pacific, flowing northward to the east of Taiwan and the northern part of Luzon Island. As the Kuroshio Current flows northward, it quasi-periodically intrudes (hereafter referred to as Kuroshio intrusion (KI)) into the northern South China Sea (SCS) basin through the Luzon Strait. Despite the complex generation mechanisms of KI, the purpose of this study is to improve our understanding of the effects of KI through the Luzon Strait on the regional atmospheric and weather variations. Long-term multiple satellite observations, including absolute dynamic topography, absolute geostrophic currents, sea surface winds by ASCAT, multi-scale ultra-high resolution sea surface temperature (MURSST) level-four analysis, and research-quality three-hourly TRMM multi-satellite precipitation analysis (TMPA), was used to systematically examine the aforementioned scientific problem. Analysis indicates that the KI is interlinked with the consequential anomalous precipitation off southwestern Taiwan. This anomalous precipitation would lead to ~560 million tons of freshwater influx during each KI event. Subsequently, independent moisture budget analysis suggests that moisture, mainly from vertical advection, is the possible source of the precipitation anomaly. Additionally, a bulk formula analysis was applied to understand how KI can trigger the precipitation anomaly through vertical advection of moisture without causing an evident change in the low-level flows. These new research findings might reconcile the divisiveness on why winds are not showing a synchronous response during the KI and consequential anomalous precipitation events.

2 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated variations in current structure, nutrient distribution, and transports disturbed by a typhoon in a typical coastal upwelling zone east of Hainan Island in the northwestern South China Sea.
Abstract: Using cruise observations before and after the typhoon Chebi in August 2013 and those without the typhoon in July 2012, this study investigates variations in current structure, nutrient distribution, and transports disturbed by a typhoon in a typical coastal upwelling zone east of Hainan Island in the northwestern South China Sea. The results show that along-shore northeastward flow dominates the coastal ocean with a volume transport of 0.64 × 106 m3/s in the case without the typhoon. The flow reversed southwestward, with its volume transport halved before the typhoon passage. After the typhoon passage, the flow returned back northeastward except the upper layer in waters deeper than 50 m and the total volume transport decreased to 0.10 × 106 m3/s. For the cross-shelf component, the flow kept shoreward, while transports crossing the 50 m isobath decreased from 0.25, 0.12 to 0.06 × 106 m3/s in the case without the typhoon as well as before and after typhoon passage, respectively. For the along-shore/cross-shelf nutrient transports, SiO32− has the largest value of 866.13/632.74 μmol/s per unit area, NO3− half of that, and PO43− and NO2− one order smaller in the offshore water without the typhoon. The values dramatically decreased to about one-third for SiO32−, NO3−, and PO43− after the typhoon, but changed little for NO2−. The disturbed wind field and associated Ekman flow and upwelling process may explain the variations in the current and nutrient transports after the typhoon.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors analyzed the path type and temporal variability of the mesoscale eddies that entered the continental shelf area of the northern South China Sea (SCS) from 1993 to 2016.
Abstract: An Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO) mesoscale eddy trajectory atlas product is used to analyze the path type and temporal variability of the eddies that entered the continental shelf area of the northern South China Sea (SCS) from 1993 to 2016. A total of 184 mesoscale eddies entered the continental shelf area of the northern SCS during a 24-year period. We classify the mesoscale eddies into four types according to the motion trajectories: along-the-isobath type, intrusion-of-continental-shelf type, local wandering type, and shelf-internal-generation type. The occurrence numbers of these four types were 87, 38, 23, and 36, respectively. The mean amplitude and radius of the along-the-isobath type are the largest, about 18 cm and 153 km, respectively; furthermore, their average lifetime is also the longest, about 93 days. The mean amplitude, radius, and lifetime are the smallest for the shelf-internal-generation type, about 16 cm, 146 km, and 74 days, respectively. The direction and velocity of the background flow field affects the intrusion path of the mesoscale eddies onto the continental shelf of the northern SCS. The seasonal distribution of the mesoscale eddies quantity is also related to the direction and velocity of the corresponding background flow field.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new method for analysing nonlinear and nonstationary data has been developed, which is the key part of the method is the empirical mode decomposition method with which any complicated data set can be decoded.
Abstract: A new method for analysing nonlinear and non-stationary data has been developed. The key part of the method is the empirical mode decomposition method with which any complicated data set can be dec...

18,956 citations

Journal ArticleDOI
TL;DR: The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF.
Abstract: A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturall...

6,437 citations

Journal ArticleDOI
TL;DR: This work proposes an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently and is a generalization of the classic Wiener filter into multiple, adaptive bands.
Abstract: During the late 1990s, Huang introduced the algorithm called Empirical Mode Decomposition, which is widely used today to recursively decompose a signal into different modes of unknown but separate spectral bands. EMD is known for limitations like sensitivity to noise and sampling. These limitations could only partially be addressed by more mathematical attempts to this decomposition problem, like synchrosqueezing, empirical wavelets or recursive variational decomposition. Here, we propose an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently. The model looks for an ensemble of modes and their respective center frequencies, such that the modes collectively reproduce the input signal, while each being smooth after demodulation into baseband. In Fourier domain, this corresponds to a narrow-band prior. We show important relations to Wiener filter denoising. Indeed, the proposed method is a generalization of the classic Wiener filter into multiple, adaptive bands. Our model provides a solution to the decomposition problem that is theoretically well founded and still easy to understand. The variational model is efficiently optimized using an alternating direction method of multipliers approach. Preliminary results show attractive performance with respect to existing mode decomposition models. In particular, our proposed model is much more robust to sampling and noise. Finally, we show promising practical decomposition results on a series of artificial and real data.

4,111 citations

Journal ArticleDOI
TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Abstract: One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic...

4,044 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations