scispace - formally typeset
Search or ask a question
Author

Quanqian Lyu

Bio: Quanqian Lyu is an academic researcher from Huazhong University of Science and Technology. The author has contributed to research in topics: Elastomer & Photonic crystal. The author has an hindex of 4, co-authored 10 publications receiving 120 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The generation of metallosupramolecular polymer-based photonic elastomers with tunable mechanical strength, angle-independent structural color, and self-healing capability is reported, which enables their chameleon-skin-like mechanochromic capability.
Abstract: Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer-based photonic elastomers with tunable mechanical strength, angle-independent structural color, and self-healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino-terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle-independent structural colors, while Young's modulus and elongation at break of the as-formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon-skin-like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing.

135 citations

Journal ArticleDOI
TL;DR: Insight is provided for the construction of porous materials with different pore characteristics for moist-induced electricity generation, especially in the exploration of more efficient and low-cost porous materials for large-scale practical application of the portable power supply.
Abstract: Harvesting energy from moist in the atmosphere has recently been demonstrated as an effective manner for a portable power supply to meet the ever-increasing demands of energy consumption. Porous materials are shown to have great potential in moist-induced electricity generation. Herein, we report moist-induced electricity generation by electrospun cellulose acetate (CA) membranes with optimized porous structures. We show that the pore size and porosity of CA membranes can be readily tuned via a facile compression and annealing process, and the effect of pore features on the output voltages can thus be investigated systematically. We find that, at a relatively high porosity, the electricity-generation performance can be further enhanced by constructing a smaller pore to form more nanochannels. Porous CA membranes, with an optimized porosity of 52.6% and a pore diameter less than 250 nm, are prepared to construct moist-induced electricity generators, which can be applied as breath sensors and can power up calculator operation. The current study provides insights for the construction of porous materials with different pore characteristics for moist-induced electricity generation, especially in the exploration of more efficient and low-cost porous materials for large-scale practical application of the portable power supply.

41 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate composite hydrogels obtained from BiVO4 and reduced graphene oxide (rGO) for enhanced solar-driven steam generation and decontamination of polluted water.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed cationic photothermal hydrogels (CPHs) based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC) and photothermal polypyrrole (PPy) with bacteria-inhibiting capability for freshwater production via solar-driven steam generation.
Abstract: Solar-driven steam generation has been recognized as a sustainable and low-cost solution to freshwater scarcity using abundant solar energy. To harvest freshwater, various interfacial evaporators with rational designs of photothermal materials and structures have been developed concentrating on increasing the evaporation rate in the past few years. However, pathogenic microorganism accumulation on the evaporators by long-duration contact with natural water resources may lead to the deterioration of water transportation and the reduction of the evaporation rate. Here, we develop cationic photothermal hydrogels (CPHs) based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC) and photothermal polypyrrole (PPy) with bacteria-inhibiting capability for freshwater production via solar-driven steam generation. A rapid water evaporation rate of 1.592 kg m-2 h-1 under simulated solar irradiation is achieved with CPHs floating on the water surface. Furthermore, we find that CPHs possess nearly 100% antibacterial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The significant bacteria-inhibiting capability is mainly attributed to the large number of ammonium groups on the CPH network. Moreover, we show that CPHs exhibit good applicability with stable evaporation in natural lake water over 2 weeks, and the number of bacteria in purified lake water is significantly reduced. The device based on CPHs can achieve ∼0.49 kg m-2 h-1 freshwater production from lake water under natural sunlight. This study provides an attractive strategy for the evaporator to inhibit biological contamination and a potential way for long-term stable freshwater production from natural water resources in practical application.

31 citations

Journal ArticleDOI
TL;DR: This study provides a low-cost and facile route of obtaining fluorescent metallosupramolecular polymers for fast and ultrasensitive humidity sensing by employing hygroscopic polyurethane (PU), whose urethane groups can coordinate with europium ion (Eu3+), emitting strong luminescent signal by a ligand-to-metal energy-transfer.
Abstract: Fluorescent supramolecular polymers that can respond to subtle external stimuli to generate luminescence signals are promising in a wide range of applications, including probes, anti-counterfeiting materials, and sensors. However, complicated preparative procedures, limited responsive speed, and relatively low sensitivity still limit their practical sensing applications. Herein, we report europium-containing metallosupramolecular (PU-Eu) elastomers for fast and ultrasensitive humidity sensing by employing hygroscopic polyurethane (PU), whose urethane groups can coordinate with europium ions (Eu3+), emitting a strong luminescent signal by ligand-to-metal energy transfer. The variant of the coordination bond strength triggered by external humidity imparts the PU-Eu elastomer with a fast (∼1.1 s) and ultrasensitive response to the humid condition, where the external humidity increases by ∼1% and the corresponding fluorescence intensity will drop by ∼421.98 a.u. By a dip-coating process, PU-Eu elastomers can be conveniently coated on a hydrophilic and porous cellulose acetate nanofiber membrane, and the resulting composite membrane can achieve real-time and reversible monitoring of environmental humidity and human respiration. Given the versatility of PU-Eu elastomers, this study provides a low-cost and facile route of obtaining fluorescent metallosupramolecular polymers for fast and ultrasensitive humidity sensing.

20 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 2020-Small
TL;DR: This review presents recent breakthroughs in structural color materials, and their applications in optical encryption and anticounterfeiting are discussed in detail.
Abstract: The counterfeiting of goods is growing worldwide, affecting practically any marketable item ranging from consumer goods to human health. Anticounterfeiting is essential for authentication, currency, and security. Anticounterfeiting tags based on structural color materials have enjoyed worldwide and long-term commercial success due to their inexpensive production and exceptional ease of percept. However, conventional anticounterfeiting tags of holographic gratings can be readily copied or imitated. Much progress has been made recently to overcome this limitation by employing sufficient complexity and stimuli-responsive ability into the structural color materials. Moreover, traditional processing methods of structural color tags are mainly based on photolithography and nanoimprinting, while new processing methods such as the inkless printing and additive manufacturing have been developed, enabling massive scale up fabrication of novel structural color security engineering. This review presents recent breakthroughs in structural color materials, and their applications in optical encryption and anticounterfeiting are discussed in detail. Special attention is given to the unique structures for optical anticounterfeiting techniques and their optical aspects for encryption. Finally, emerging research directions and current challenges in optical encryption technologies using structural color materials is presented.

196 citations

Journal ArticleDOI
TL;DR: This article provides a rigorous overview of this new generation of self-healing elastomers, in which the combination of covalent bonds and non-covalent interactions provides an optimal balance between mechanical performance and repairability.
Abstract: The evolution of self-healing polymers has resulted in a myriad of healing designs that have given way to complex systems capable of supporting multiple cycles, among other features. This progression enables us to propose the implementation of a timeline that classifies self-healing polymers in generations based on the healing mechanism, and correlated with historical development. The first generation employed the encapsulation of external healing agents; the second one, based on intrinsic mechanisms, applied reversible chemistries; and the third generation was inspired by natural examples such as plants and human skin, in which the healing agent is embedded in vascular networks. Despite great efforts and, with a few exceptions, polymers with high healing efficiency and high mechanical performance are not common. To improve this situation, a combination of different mechanisms is currently emerging, giving birth to the fourth generation of self-healing materials. This article, focused on self-healing elastomers, provides a rigorous overview of this new generation, in which the combination of covalent bonds and non-covalent interactions provides an optimal balance between mechanical performance and repairability. The implementation of this concept leads to materials with real commercial potential in functional applications, such as coatings, sensors, actuators, controlled release of drugs, seals, gaskets, hoses, and even high-performance applications such as tires and railway components.

163 citations

Journal ArticleDOI
TL;DR: The origin of color in CNCs, the control of photonic properties of CNC films, the development of new composite materials of C NCs that can yield flexible photonic structures, and the future challenges in this field are discussed.
Abstract: Over millions of years, animals and plants have evolved complex molecules and structures that endow them with vibrant colors. Among the sources of natural coloration, structural color is prominent in insects, bird feathers, snake skin, plants, and other organisms, where the color arises from the interaction of light with nanoscale features rather than absorption from a pigment. Cellulose nanocrystals (CNCs) are a biorenewable resource that spontaneously organize into chiral nematic liquid crystals having a hierarchical structure that resembles the Bouligand structure of arthropod shells. The periodic, chiral nematic organization of CNC films leads them to diffract light, making them appear iridescent. Over the past two decades, there have been many advances to develop the photonic properties of CNCs for applications ranging from cosmetics to sensors. Here, the origin of color in CNCs, the control of photonic properties of CNC films, the development of new composite materials of CNCs that can yield flexible photonic structures, and the future challenges in this field are discussed. In particular, recent efforts to make flexible photonic materials using CNCs are highlighted.

136 citations

Journal ArticleDOI
TL;DR: The research on advanced functional polymers is being driven by the fast-growing demand for new functional materials that can be used in revolutionary technologies as mentioned in this paper, which can be endowed with functions by using certain special preparation methods or by introducing functional groups or fillers into materials.
Abstract: The research on advanced functional polymers is being driven by the fast-growing demand for new functional materials that can be used in revolutionary technologies. Polymers can be endowed with functions by using certain special preparation methods or by introducing functional groups or fillers into materials. These functions are either intrinsically possessed by materials or actuated by external stimuli. In this review, we present an overview of the recent developments made in the research hotspots of functional polymers, encompassing polymerization methodologies, luminescent polymers, photovoltaic polymers, other electronic and optical polymers (including low-k polyimides and second-order nonlinear optical polymers), biorelated polymers (particularly those for biomedical applications), supramolecular polymers, stimuli-responsive polymers, shape-memory polymers, separation polymer membranes, energy storage polymers, and covalent organic framework polymers. The concepts, design strategies at the molecular level, preparation methods, classifications, properties, potential applications, and recent progress made in such polymers are summarized. Challenges and future perspectives of each type of functional polymers are also addressed, including research efforts regarding the design and fabrication of functional polymers for serving the increasing demand for new materials.

99 citations

Journal ArticleDOI
TL;DR: An up‐to‐date account of the recent advancements in nanocellulose‐derived functional materials and their emerging applications in areas of chiral photonics, soft actuators, energy storage, and biomedical science is provided.

98 citations