scispace - formally typeset
Search or ask a question
Author

Quirin M. Kainz

Bio: Quirin M. Kainz is an academic researcher from University of Regensburg. The author has contributed to research in topics: Metathesis & Catalysis. The author has an hindex of 11, co-authored 15 publications receiving 964 citations. Previous affiliations of Quirin M. Kainz include California Institute of Technology & University of Kansas.

Papers
More filters
Journal ArticleDOI
12 Feb 2016-Science
TL;DR: A photoinduced copper-catalyzed method for coupling readily available racemic tertiary alkyl chloride electrophiles with amines to generate fully substituted stereocenters with high enantioselectivity is described.
Abstract: Despite a well-developed and growing body of work in copper catalysis, the potential of copper to serve as a photocatalyst remains underexplored. Here we describe a photoinduced copper-catalyzed method for coupling readily available racemic tertiary alkyl chloride electrophiles with amines to generate fully substituted stereocenters with high enantioselectivity. The reaction proceeds at –40°C under excitation by a blue light-emitting diode and benefits from the use of a single, Earth-abundant transition metal acting as both the photocatalyst and the source of asymmetric induction. An enantioconvergent mechanism transforms the racemic starting material into a single product enantiomer.

507 citations

Journal ArticleDOI
TL;DR: The main attributes of magnetic supports are discussed and how to make the different nanomagnets accessible by surface functionalization and the first examples of the use of magnetic scaffolds manipulated by external magnetic fields in flow reactors on the laboratory scale are discussed.
Abstract: The work-up of chemical reactions by standard techniques is often time consuming and energy demanding, especially when chemists have to guarantee low levels of metal contamination in the products. Therefore, scientists need new ideas to rapidly purify reaction mixtures that are both economically and environmentally benign. One intriguing approach is to tether functionalities that are required to perform organic reactions to magnetic nanoparticles, for example, catalysts, reagents, scavengers, or chelators. This strategy allows researchers to quickly separate active agents from reaction mixtures by exploiting the magnetic properties of the support. In this Account, we discuss the main attributes of magnetic supports and describe how we can make the different nanomagnets accessible by surface functionalization.Arguably the most prominent magnetic nanoparticles are superparamagnetic iron oxide nanoparticles (SPIONs) due to their biologically well-accepted constituents, their established size-selective synthe...

260 citations

Journal ArticleDOI
TL;DR: In this paper, a magnetically hybrid Pd/C or Pd@CNT catalysts were used for the hydrogenation of alkenes, and the performance of the Pd catalyst was further improved by the addition of 10 vol% Et2O to iso-propanol.
Abstract: Palladium nanoparticles are deposited on the surface of highly magnetic carbon-coated cobalt nanoparticles. In contrast to the established synthesis of Pd nanoparticles via reduction of Pd(II) precursors, the microwave decomposition of a Pd(0) source leads to a more efficient Pd deposition, resulting in a material with considerably higher activity in the hydrogenation of alkenes. Systematic variation of the Pd loading on the carbon-coated cobalt nanoparticle surface reveals a distinct trend to higher activities with decreased loading of Pd. The activity of the catalyst is further improved by the addition of 10 vol% Et2O to iso-propanol that is found to be the solvent of choice. With respect to activity (turnover frequencies up to 11 095 h−1), handling, recyclability through magnetic decantation, and leaching of Pd (≤6 ppm/cycle), this novel magnetic hybrid material compares favorably to conventional Pd/C or Pd@CNT catalysts.

102 citations

Journal ArticleDOI
TL;DR: In this paper, carbon coated cobalt nanoparticles were tagged with azabis(oxazoline)−copper(II) complexes utilizing a copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction, and the efficacy of the resulting nanomagnetic catalyst was tested in the kinetic resolution of racemic 1,2-diphenylethane-1,2diol via asymmetric monobenzoylation.
Abstract: Carbon coated cobalt nanoparticles were tagged with azabis(oxazoline)−copper(II) complexes utilizing a copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction, and the efficacy of the resulting nanomagnetic catalyst was tested in the kinetic resolution of racemic 1,2-diphenylethane-1,2-diol via asymmetric monobenzoylation. The novel semiheterogeneous catalyst was examined under batch conditions and in a continuous flow-type reactor. The extremely high ferromagnetism of the cobalt cores not only facilitates the recycling of the nanobeads via magnetic decantation in the batch reactions but also enables a novel continuous flow-reactor design: This further allowed efficient agitation and containment of the particles to occur without the need for sophisticated separation strategies such as nanofiltration.

97 citations

Journal ArticleDOI
TL;DR: In this article, a photoinduced copper-catalyzed method for coupling readily available racemic tertiary alkyl chloride electrophiles with amines to generate fully substituted stereocenters with high enantioselectivity is described.
Abstract: Despite a well-developed and growing body of work in copper catalysis, the potential of copper to serve as a photocatalyst remains underexplored. Here we describe a photoinduced copper-catalyzed method for coupling readily available racemic tertiary alkyl chloride electrophiles with amines to generate fully substituted stereocenters with high enantioselectivity. The reaction proceeds at –40°C under excitation by a blue light-emitting diode and benefits from the use of a single, Earth-abundant transition metal acting as both the photocatalyst and the source of asymmetric induction. An enantioconvergent mechanism transforms the racemic starting material into a single product enantiomer.

75 citations


Cited by
More filters
Journal ArticleDOI
05 Jul 2017
TL;DR: The combination of Photoredox catalysis and transition metal catalysis is reviewed to show how this provides access to highly reactive oxidation states of transition metals and distinct activation modes that further enable the synthetic chemist.
Abstract: The merger of transition metal catalysis and photocatalysis, termed metallaphotocatalysis, has recently emerged as a versatile platform for the development of new, highly enabling synthetic methodologies. Photoredox catalysis provides access to reactive radical species under mild conditions from abundant, native functional groups, and, when combined with transition metal catalysis, this feature allows direct coupling of non-traditional nucleophile partners. In addition, photocatalysis can aid fundamental organometallic steps through modulation of the oxidation state of transition metal complexes or through energy-transfer-mediated excitation of intermediate catalytic species. Metallaphotocatalysis provides access to distinct activation modes, which are complementary to those traditionally used in the field of transition metal catalysis, thereby enabling reaction development through entirely new mechanistic paradigms. This Review discusses key advances in the field of metallaphotocatalysis over the past decade and demonstrates how the unique mechanistic features permit challenging, or previously elusive, transformations to be accomplished. Transition metal catalysis is well established as an enabling tool in synthetic organic chemistry. Photoredox catalysis has recently emerged as a method to effect reactions that occur through single-electron-transfer pathways. Here we review the combination of the two to show how this provides access to highly reactive oxidation states of transition metals and distinct activation modes that further enable the synthetic chemist.

1,330 citations

Journal ArticleDOI

1,307 citations

Journal ArticleDOI
TL;DR: This Review compares classical and photocatalytic procedures for selected classes of reactions and highlights their advantages and limitations.
Abstract: Visible-light photocatalysis has evolved over the last decade into a widely used method in organic synthesis. Photocatalytic variants have been reported for many important transformations, such as cross-coupling reactions, α-amino functionalizations, cycloadditions, ATRA reactions, or fluorinations. To help chemists select photocatalytic methods for their synthesis, we compare in this Review classical and photocatalytic procedures for selected classes of reactions and highlight their advantages and limitations. In many cases, the photocatalytic reactions proceed under milder reaction conditions, typically at room temperature, and stoichiometric reagents are replaced by simple oxidants or reductants, such as air, oxygen, or amines. Does visible-light photocatalysis make a difference in organic synthesis? The prospect of shuttling electrons back and forth to substrates and intermediates or to selectively transfer energy through a visible-light-absorbing photocatalyst holds the promise to improve current procedures in radical chemistry and to open up new avenues by accessing reactive species hitherto unknown, especially by merging photocatalysis with organo- or metal catalysis.

1,211 citations

Journal ArticleDOI
TL;DR: The functionalized magnetically retrievable catalysts or nanocatalysts that are increasingly being used in catalysis, green chemistry and pharmaceutically significant reactions are summarized in this review.
Abstract: Surface functionalization of nano-magnetic nanoparticles is a well-designed way to bridge the gap between heterogeneous and homogeneous catalysis. The introduction of magnetic nanoparticles (MNPs) in a variety of solid matrices allows the combination of well-known procedures for catalyst heterogenization with techniques for magnetic separation. Magnetite is a well-known material, also known as ferrite (Fe3O4), and can be used as a versatile support for functionalization of metals, organocatalysts, N-heterocyclic carbenes, and chiral catalysts. It is used as a support for important homogeneous catalytically active metals such as Pd, Pt, Cu, Ni, Co, Ir, etc. to obtain stable and magnetically recyclable heterogeneous catalysts. Homogeneous organocatalysts can be successfully decorated with linkers/ligands on the surface of magnetite or alternatively the organocatalysts can be directly immobilized on the surface of magnetite. The functionalized magnetically retrievable catalysts or nanocatalysts that are increasingly being used in catalysis, green chemistry and pharmaceutically significant reactions are summarized in this review.

1,057 citations

Journal ArticleDOI
TL;DR: This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions.
Abstract: Solution combustion is an exciting phenomenon, which involves propagation of self-sustained exothermic reactions along an aqueous or sol–gel media. This process allows for the synthesis of a variety of nanoscale materials, including oxides, metals, alloys, and sulfides. This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years. Thermodynamics and kinetics of reactive solutions used in different chemical routes are considered, and the role of process parameters is discussed, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions. The basic principles for controlling the composition, structure, and nanostructure of SCS products, and routes to regulate the size and morphology of the nanoscale materials are also reviewed. Recently developed systems that lead to the formation of novel materials and unique structures (e.g., thin films and two-dimensional crystals) with unusual...

841 citations