scispace - formally typeset
Search or ask a question
Author

Qunwei Tang

Bio: Qunwei Tang is an academic researcher from Jinan University. The author has contributed to research in topics: Dye-sensitized solar cell & Solar cell. The author has an hindex of 54, co-authored 323 publications receiving 10398 citations. Previous affiliations of Qunwei Tang include Ocean University of China & Longyan University.


Papers
More filters
Journal ArticleDOI
Qinghua Li1, Jihuai Wu1, Qunwei Tang1, Zhang Lan1, Pinjiang Li1, Jianming Lin1, Leqing Fan1 
TL;DR: An inexpensive microporous polyaniline (PANI) is used as a substitute for platinum to construct the counter electrode in dye-sensitized solar cells (DSSCs).

445 citations

Journal ArticleDOI
TL;DR: A multistep solution-processing method was developed to fabricate high-purity inorganic CsPbBr3 perovskite films for use in efficient solar cells with high efficiency and improved stability, and upon interfacial modification with graphene quantum dots it achieved a power conversion efficiency as high as 9.72 % under standard solar illumination conditions.
Abstract: All-inorganic perovskite solar cells with high efficiency and improved stability are promising for commercialization. A multistep solution-processing method was developed to fabricate high-purity inorganic CsPbBr3 perovskite films for use in efficient solar cells. By tuning the number of deposition cycles (n) of a CsBr solution, the phase conversion from CsPb2 Br5 (n ≤3), to CsPbBr3 (n=4), and Cs4 PbBr6 (n≥5) was optimized to achieve vertical- and monolayer-aligned grains. Upon interfacial modification with graphene quantum dots, the all-inorganic perovskite solar cell (without a hole-transporting layer) achieved a power conversion efficiency (PCE) as high as 9.72 % under standard solar illumination conditions. Under challenging conditions, such as 90 % relative humidity (RH) at 25 °C or 80 °C at zero humidity, the optimized device retained 87 % PCE over 130 days or 95 % over 40 days, compared to the initial efficiency.

414 citations

Journal ArticleDOI
Yanyan Duan1, Qunwei Tang1, Juan Liu1, Benlin He1, Liangmin Yu1 
TL;DR: Fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels.
Abstract: The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I−/I3− redox couple, electrocatalytic activity toward I3− reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85Se, 7.85 % and 4.37 % for Ni0.85Se, 6.43 % and 4.24 % for Cu0.50Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels.

225 citations

Journal ArticleDOI
Xiaoxu Chen1, Qunwei Tang1, Benlin He1, Lin Lin, Liangmin Yu1 
TL;DR: Pt-free binary Co-Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs show power conversion efficiencies higher than those of Pt-only CEs, and the fabrication expense is markedly reduced.
Abstract: Dye-sensitized solar cells (DSSCs) have attracted growing interest because of their application in renewable energy technologies in developing modern low-carbon economies. However, the commercial application of DSSCs has been hindered by the high expenses of platinum (Pt) counter electrodes (CEs). Here we use Pt-free binary Co-Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs. As a result of the rapid charge transfer, good electrical conduction, and reasonable electrocatalysis, the power conversion efficiencies of Co-Ni-based DSSCs are higher than those of Pt-only CEs, and the fabrication expense is markedly reduced. The DSSCs based on a CoNi0.25 alloy CE displays an impressive power conversion efficiency of 8.39 %, fast start-up, multiple start/stop cycling, and good stability under extended irradiation.

214 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
07 Jan 2011-Polymer
TL;DR: A survey of the literature on polymer nanocomposites with graphene-based fillers including recent work using graphite nanoplatelet fillers is presented in this article, along with methods for dispersing these materials in various polymer matrices.

2,782 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations