scispace - formally typeset
Q

Quoc V. Le

Researcher at Google

Publications -  229
Citations -  127721

Quoc V. Le is an academic researcher from Google. The author has contributed to research in topics: Artificial neural network & Language model. The author has an hindex of 103, co-authored 217 publications receiving 101217 citations. Previous affiliations of Quoc V. Le include Northwestern University & Tel Aviv University.

Papers
More filters
Proceedings Article

Sequence to Sequence Learning with Neural Networks

TL;DR: The authors used a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector.
Posted Content

Sequence to Sequence Learning with Neural Networks

TL;DR: This paper presents a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure, and finds that reversing the order of the words in all source sentences improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Proceedings Article

Distributed Representations of Sentences and Documents

TL;DR: Paragraph Vector is an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents, and its construction gives the algorithm the potential to overcome the weaknesses of bag-of-words models.
Posted Content

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

TL;DR: GNMT, Google's Neural Machine Translation system, is presented, which attempts to address many of the weaknesses of conventional phrase-based translation systems and provides a good balance between the flexibility of "character"-delimited models and the efficiency of "word"-delicited models.
Proceedings ArticleDOI

Learning Transferable Architectures for Scalable Image Recognition

TL;DR: NASNet as discussed by the authors proposes to search for an architectural building block on a small dataset and then transfer the block to a larger dataset, which enables transferability and achieves state-of-the-art performance.