scispace - formally typeset
Search or ask a question
Author

R. A. Fisher

Bio: R. A. Fisher is an academic researcher from Houston Methodist Hospital. The author has contributed to research in topics: Population & Linkage (software). The author has an hindex of 82, co-authored 256 publications receiving 109451 citations. Previous affiliations of R. A. Fisher include Panjab University, Chandigarh & University of Cambridge.


Papers
More filters
Book
01 Jan 1930

14,612 citations

Book
01 Jan 1925
TL;DR: The prime object of as discussed by the authors is to put into the hands of research workers, and especially of biologists, the means of applying statistical tests accurately to numerical data accumulated in their own laboratories or available in the literature.
Abstract: The prime object of this book is to put into the hands of research workers, and especially of biologists, the means of applying statistical tests accurately to numerical data accumulated in their own laboratories or available in the literature.

11,308 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a form of theory which appears to be appropriate to measurements of position on a sphere and demonstrated the simultaneous distribution of the amplitude and direction of the vector sum of a number of random unit vectors of given precision.
Abstract: Any topological framework requires the development of a theory of errors of characteristic and appropriate mathematical form. The paper develops a form of theory which appears to be appropriate to measurements of position on a sphere. The primary problems of estimation as applied to the true direction, and the precision of observations, are discussed in the subcases which arise. The simultaneous distribution of the amplitude and direction of the vector sum of a number of random unit vectors of given precision, is demonstrated. From this is derived the test of significance appropriate to a worker whose knowledge of precision lies entirely in the internal evidence of the sample. This is the analogue of ‘Student’s’ test in the Gaussian theory of errors. The general formulae obtained are illustrated using measurements of the direction of remanent magnetization in the directly and inversely magnetized lava flows obtained in Iceland by Mr J. Hospers.

5,482 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Abstract: The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data. High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

37,861 citations

Proceedings ArticleDOI
06 Aug 2002
TL;DR: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced, and the evolution of several paradigms is outlined, and an implementation of one of the paradigm is discussed.
Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described.

35,104 citations

Book
B. J. Winer1
01 Jan 1962
TL;DR: In this article, the authors introduce the principles of estimation and inference: means and variance, means and variations, and means and variance of estimators and inferors, and the analysis of factorial experiments having repeated measures on the same element.
Abstract: CHAPTER 1: Introduction to Design CHAPTER 2: Principles of Estimation and Inference: Means and Variance CHAPTER 3: Design and Analysis of Single-Factor Experiments: Completely Randomized Design CHAPTER 4: Single-Factor Experiments Having Repeated Measures on the Same Element CHAPTER 5: Design and Analysis of Factorial Experiments: Completely-Randomized Design CHAPTER 6: Factorial Experiments: Computational Procedures and Numerical Example CHAPTER 7: Multifactor Experiments Having Repeated Measures on the Same Element CHAPTER 8: Factorial Experiments in which Some of the Interactions are Confounded CHAPTER 9: Latin Squares and Related Designs CHAPTER 10: Analysis of Covariance

25,607 citations