scispace - formally typeset
Search or ask a question
Author

R. A. Johnson

Other affiliations: University of Colorado Boulder
Bio: R. A. Johnson is an academic researcher from University of Cincinnati. The author has contributed to research in topics: Neutrino & Neutrino oscillation. The author has an hindex of 68, co-authored 294 publications receiving 19088 citations. Previous affiliations of R. A. Johnson include University of Colorado Boulder.


Papers
More filters
Journal ArticleDOI
F. P. An, J. Z. Bai, A. B. Balantekin1, H. R. Band1  +271 moreInstitutions (34)
TL;DR: The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ(13) with a significance of 5.2 standard deviations.
Abstract: The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ13 with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW_(th) reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43 000 ton–GW_(th)–day live-time exposure in 55 days, 10 416 (80 376) electron-antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R=0.940± 0.011(stat.)±0.004(syst.). A rate-only analysis finds sin^22θ_(13)=0.092±0.016(stat.)±0.005(syst.) in a three-neutrino framework.

2,163 citations

Journal ArticleDOI
K. Abe1, N. Abgrall2, Yasuo Ajima, Hiroaki Aihara1  +413 moreInstitutions (53)
TL;DR: The T2K experiment observes indications of ν (μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target, and under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance.
Abstract: The T2K experiment observes indications of nu(mu) -> nu(mu) e appearance in data accumulated with 1.43 x 10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Delta m(23)(2)| = 2.4 x 10(-3) eV(2), sin(2)2 theta(23) = 1 and sin(2)2 theta(13) = 0, the expected number of such events is 1.5 +/- 0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7 x 10(-3), equivalent to 2.5 sigma significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2 theta(13) < 0.28(0.34) for delta(CP) = 0 and a normal (inverted) hierarchy.

1,361 citations

Journal ArticleDOI
K. Abe1, N. Abgrall2, Hiroaki Aihara1, Yasuo Ajima  +533 moreInstitutions (53)
TL;DR: The T2K experiment as discussed by the authors is a long-baseline neutrino oscillation experiment whose main goal is to measure the last unknown lepton sector mixing angle by observing its appearance in a particle beam generated by the J-PARC accelerator.
Abstract: The T2K experiment is a long-baseline neutrino oscillation experiment Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing { u}_e appearance in a { u}_{\mu} beam It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via { u}_{\mu} disappearance studies Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem

714 citations

Journal ArticleDOI
K. Abe1, J. Adam2, Hiroaki Aihara3, T. Akiri4  +335 moreInstitutions (52)
TL;DR: The T2K experiment has observed electron neutrino appearance in a muon neutrinos beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV, corresponding to a significance of 7.3σ.
Abstract: The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3 sigma when compared to 4.92 +/- 0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles theta(12), theta(23), theta(13), a mass difference vertical bar Delta m(32)(2)vertical bar and a CP violating phase delta(CP). In this neutrino oscillation scenario, assuming vertical bar Delta m(32)(2)vertical bar = 2.4 x 10(-3) eV(2), sin theta(2)(23) = 0.5, and vertical bar Delta m(32)(2)vertical bar > 0 (vertical bar Delta m(32)(2)vertical bar <0), a best- fit value of sin2 theta(2)(13) = 0.140(- 0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at delta(CP) = 0. When combining the result with the current best knowledge of oscillation parameters including the world average value of theta(13) from reactor experiments, some values of delta(CP) are disfavored at the 90% C. L.

515 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter LCDM cosmology.
Abstract: We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.

6,201 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations