scispace - formally typeset
Search or ask a question
Author

R. A. Verrall

Bio: R. A. Verrall is an academic researcher from Harvard University. The author has contributed to research in topics: Creep & Superplasticity. The author has an hindex of 3, co-authored 3 publications receiving 1581 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new mechanism for superplastic deformation is described and modelled, which differs fundamentally from Nabarro-Herring and Coble creep in a topological sense: grains switch their neighbors and do not elongate significantly.

1,307 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived expressions for the rate of diffusional flow when the density of sinks and sources becomes small and when their mobility is limited by impurities, solutes, or precipitates.

294 citations

Journal ArticleDOI
TL;DR: In this article, the exact calculation of the rate at which polycrystalline solids creep by grain-neighbour switching is difficult because the strains are large and the changes of grain geometry are considerable.

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The mechanical properties of nanocrystalline materials are reviewed in this paper, with emphasis on their constitutive response and on the fundamental physical mechanisms, including the deviation from the Hall-Petch slope and possible negative slope, the effect of porosity, the difference between tensile and compressive strength, the limited ductility, the tendency for shear localization, fatigue and creep responses.

3,828 citations

Journal ArticleDOI
09 Mar 2000-Nature
TL;DR: It is shown that fully dense cubic Y2O3 with a grain size of 60 nm can be prepared by a simple two-step sintering method, at temperatures of about 1,000 °C without applied pressure, and the suppression of the final-stage grain growth is achieved by exploiting the difference in kinetics between grain- boundary diffusion and grain-boundary migration.
Abstract: Sintering is the process whereby interparticle pores in a granular material are eliminated by atomic diffusion driven by capillary forces. It is the preferred manufacturing method for industrial ceramics. The observation of Burke and Coble that certain crystalline granular solids could gain full density and translucency by solid-state sintering was an important milestone for modern technical ceramics. But these final-stage sintering processes are always accompanied by rapid grain growth, because the capillary driving forces for sintering (involving surfaces) and grain growth (involving grain boundaries) are comparable in magnitude, both being proportional to the reciprocal grain size. This has greatly hampered efforts to produce dense materials with nanometre-scale structure (grain size less than 100 nm), leading many researchers to resort to the 'brute force' approach of high-pressure consolidation at elevated temperatures. Here we show that fully dense cubic Y2O3 (melting point, 2,439 degrees C) with a grain size of 60 nm can be prepared by a simple two-step sintering method, at temperatures of about 1,000 degrees C without applied pressure. The suppression of the final-stage grain growth is achieved by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. Such a process should facilitate the cost-effective preparation of other nanocrystalline materials for practical applications.

1,328 citations

Journal ArticleDOI
TL;DR: A review of the literature concerning cavity nucleation as a result of plastic deformation indicates that at low temperatures there is a critical plastic strain required to nucleate a cavity.

874 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of grain size and water content on the high-temperature plasticity of olivine aggregates was studied, using a gas medium high-pressure deformation apparatus.
Abstract: The influence of grain size and water content on the high-temperature plasticity of olivine aggregates was studied, using a gas-medium high-pressure deformation apparatus. The specimens used were hot-pressed, dense olivine aggregates with controlled grain size ranging from a few to 70 μm, with or without added water. Mechanical tests were made at 1573 K and 300 MPa confining pressure and at strain rates of 10−3 to 10−6 s−1. The results reveal two distinct mechanisms of deformation, depending on stress level and grain size. At relatively high stress and large grain size, the strain rate is proportional to about the cube power of the stress and is nearly independent of grain size. In this regime, microstructural observations gave evidence of intragranular deformation involving dislocation motion. At low stress and small grain size, the strain rate depends almost linearly on stress and decreases markedly with increase in grain size. In the latter regime, little evidence was found for intragranular deformation. These observations suggest that the deformation mechanism in the grain size insensitive regime is dislocation creep, while that in the grain size sensitive regime is diffusion creep. In both regimes, water was found to enhance the creep rate. The absence of grain size sensitivity in the dislocation creep regime and comparison with single-crystal data indicate that the water weakening effect is mainly an intragranular process. However, the existence also of a water weakening effect in the diffusion creep regime indicates that water also enhances diffusion. The extrapolation of the present results to coarser grain sizes indicates that the transition from dislocation to diffusion creep occurs at 0.1–1 MPa for 10-mm grain size. Therefore it is suggested that this transition may occur in the upper mantle and that, in both regimes, the presence of trace amounts of water will result in significantly lower creep strength than under strictly “dry” conditions.

814 citations

Journal ArticleDOI
TL;DR: In this article, the development of theories for normal grain growth in pure single phase systems is reviewed and a major theme which emerges is the interplay between the topological requirements for space filling and the kinetics of change in mean grain size with time.

723 citations