scispace - formally typeset
Search or ask a question
Author

R B Painter

Bio: R B Painter is an academic researcher. The author has contributed to research in topics: DNA repair & DNA damage. The author has an hindex of 1, co-authored 1 publications receiving 777 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Doses of x-radiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition in AT cells and thus less delay during which x-ray damage could be repaired, allowing normal cells to repair DNA damage before it can be expressed.
Abstract: The cause of increased radiosensitivity in ataxia-telangiectasia (AT) cells may be a defect in their ability to respond to DNA damage rather than a defect in their ability to repair it. Doses of x-radiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition in AT cells and thus less delay during which x-ray damage could be repaired. The radioresistance of DNA synthesis in AT cells was primarily due to a much smaller inhibition of replicon initiation than in normal cells; the AT cells were also more resistant to damage that inhibited chain elongation. AT cells have been reported to undergo less radiation-induced mitotic delay than normal cells, which may cause them to move from G2 phase into mitosis before repair is complete and may result in the increased incidence of chromatid aberrations observed by others. Therefore, AT cells fail to go through those delays that allow normal cells to repair DNA damage before it can be expressed.

784 citations


Cited by
More filters
Journal Article
TL;DR: A role for the wild-type p53 protein in the inhibition of DNA synthesis that follows DNA damage is suggested and a new mechanism for how the loss of wild- type p53 might contribute to tumorigenesis is suggested.
Abstract: The inhibition of replicative DNA synthesis that follows DNA damage may be critical for avoiding genetic lesions that could contribute to cellular transformation. Exposure of ML-1 myeloblastic leukemia cells to nonlethal doses of the DNA damaging agents, gamma-irradiation or actinomycin D, causes a transient inhibition of replicative DNA synthesis via both G1 and G2 arrests. Levels of p53 protein in ML-1 cells and in proliferating normal bone marrow myeloid progenitor cells increase and decrease in temporal association with the G1 arrest. In contrast, the S-phase arrest of ML-1 cells caused by exposure to the anti-metabolite, cytosine arabinoside, which does not directly damage DNA, is not associated with a significant change in p53 protein levels. Caffeine treatment blocks both the G1 arrest and the induction of p53 protein after gamma-irradiation, thus suggesting that blocking the induction of p53 protein may contribute to the previously observed effects of caffeine on cell cycle changes after DNA damage. Unlike ML-1 cells and normal bone marrow myeloid progenitor cells, hematopoietic cells that either lack p53 gene expression or overexpress a mutant form of the p53 gene do not exhibit a G1 arrest after gamma-irradiation; however, the G2 arrest is unaffected by the status of the p53 gene. These results suggest a role for the wild-type p53 protein in the inhibition of DNA synthesis that follows DNA damage and thus suggest a new mechanism for how the loss of wild-type p53 might contribute to tumorigenesis.

3,878 citations

Journal ArticleDOI
23 Nov 2000-Nature
TL;DR: The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development, and this work has shown that direct activation of DNA repair networks is needed to correct this problem.
Abstract: The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development. Organisms respond to chromosomal insults by activating a complex damage response pathway. This pathway regulates known responses such as cell-cycle arrest and apoptosis (programmed cell death), and has recently been shown to control additional processes including direct activation of DNA repair networks.

3,230 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed and apoptosis, which eliminates heavily damaged or seriously deregulated cells, is analyzed.
Abstract: DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.

3,171 citations

Journal ArticleDOI
13 Nov 1992-Cell
TL;DR: Three participants are identified (AT gene(s), p53, and GADD45) in a signal transduction pathway that controls cell cycle arrest following DNA damage; abnormalities in this pathway probably contribute to tumor development.

3,098 citations

Journal ArticleDOI
03 Nov 1989-Science
TL;DR: It appears that some checkpoints are eliminated during the early embryonic development of some organisms; this fact may pose special problems for the fidelity of embryonic cell division.
Abstract: The events of the cell cycle of most organisms are ordered into dependent pathways in which the initiation of late events is dependent on the completion of early events. In eukaryotes, for example, mitosis is dependent on the completion of DNA synthesis. Some dependencies can be relieved by mutation (mitosis may then occur before completion of DNA synthesis), suggesting that the dependency is due to a control mechanism and not an intrinsic feature of the events themselves. Control mechanisms enforcing dependency in the cell cycle are here called checkpoints. Elimination of checkpoints may result in cell death, infidelity in the distribution of chromosomes or other organelles, or increased susceptibility to environmental perturbations such as DNA damaging agents. It appears that some checkpoints are eliminated during the early embryonic development of some organisms; this fact may pose special problems for the fidelity of embryonic cell division.

3,048 citations