scispace - formally typeset
Search or ask a question
Author

R. B. Wattson

Bio: R. B. Wattson is an academic researcher from Utah State University. The author has contributed to research in topics: HITRAN & Venus. The author has an hindex of 10, co-authored 13 publications receiving 3171 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The data and features that have been added or replaced since the previous edition of HITRAN are described, including instances of critical data that are forthcoming.
Abstract: Since its first publication in 1973, the HITRAN molecular spectroscopic database has been recognized as the international standard for providing the necessary fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that are forthcoming.

1,846 citations

Proceedings ArticleDOI
TL;DR: The data and features that have been added or replaced since the previous edition of HITRAN are described and instances of critical data that are forthcoming are cited.
Abstract: Nineteen ninety-eight marks the 25th anniversary of the release of the first HITRAN database. HITRAN is recognized as the international standard of the fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that is forthcoming. A new release is planned for 1998.

828 citations

Journal ArticleDOI
01 May 1993-Icarus
TL;DR: In this paper, the near-IR spectra of the Venus night-side emission are simulated by means of a radiative transfer code that allows for emission, absorption, and scattering by atmospheric gases and particles.

320 citations

Journal ArticleDOI
TL;DR: In this paper, the Fourier transform spectra of 13 C 16 O 2 lines have been measured in the three bands centered at 883.145, 913.425, and 1017.659 cm −, using the Direct Numerical Diagonalization method.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations

Journal ArticleDOI
TL;DR: The data and features that have been added or replaced since the previous edition of HITRAN are described, including instances of critical data that are forthcoming.
Abstract: Since its first publication in 1973, the HITRAN molecular spectroscopic database has been recognized as the international standard for providing the necessary fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that are forthcoming.

1,846 citations

Journal ArticleDOI
TL;DR: In this paper, a new molecular spectroscopic database for high-temperature modeling of the spectra of molecules in the gas phase is described, called HITEMP, which is analogous to the HITRAN database but encompasses many more bands and transitions than HitRAN for the absorbers H2O, CO2, CO, NO and OH.
Abstract: A new molecular spectroscopic database for high-temperature modeling of the spectra of molecules in the gas phase is described. This database, called HITEMP, is analogous to the HITRAN database but encompasses many more bands and transitions than HITRAN for the absorbers H2O, CO2, CO, NO, and OH. HITEMP provides users with a powerful tool for a great many applications: astrophysics, planetary and stellar atmospheres, industrial processes, surveillance, non-local thermodynamic equilibrium problems, and investigating molecular interactions, to name a few. The sources and implementation of the spectroscopic parameters incorporated into HITEMP are discussed.

1,715 citations

Journal ArticleDOI
TL;DR: The line-by-line radiative transfer model (LBLRTM), the line file creation program (LNFL), RRTM_LW and RRTm_SW, Monochromatic Radiative Transfer Model (MonoRTM) as mentioned in this paper, MT_CKD Continuum; and the Kurucz Solar Source Function (SDF).
Abstract: The radiative transfer models developed at AER are being used extensively for a wide range of applications in the atmospheric sciences. This communication is intended to provide a coherent summary of the various radiative transfer models and associated databases publicly available from AER ( http://www.rtweb.aer.com ). Among the communities using the models are the remote sensing community (e.g. TES, IASI), the numerical weather prediction community (e.g. ECMWF, NCEP GFS, WRF, MM5), and the climate community (e.g. ECHAM5). Included in this communication is a description of the central features and recent updates for the following models: the line-by-line radiative transfer model (LBLRTM); the line file creation program (LNFL); the longwave and shortwave rapid radiative transfer models, RRTM_LW and RRTM_SW; the Monochromatic Radiative Transfer Model (MonoRTM); the MT_CKD Continuum; and the Kurucz Solar Source Function. LBLRTM and the associated line parameter database (e.g. HITRAN 2000 with 2001 updates) play a central role in the suite of models. The physics adopted for LBLRTM has been extensively analyzed in the context of closure experiments involving the evaluation of the model inputs (e.g. atmospheric state), spectral radiative measurements and the spectral model output. The rapid radiative transfer models are then developed and evaluated using the validated LBLRTM model.

1,600 citations

Journal ArticleDOI
TL;DR: The HITRAN molecular absorption database as mentioned in this paper contains line parameters for 31 species and their isotopomers that are significant for terrestrial atmospheric studies, including chlorofluorocarbons and other molecular species that are not amenable to line-by-line representation.
Abstract: We describe in this paper the modifications, improvements, and enhancements to the HITRAN molecular absorption database that have occurred in the two editions of 1991 and 1992 The current database includes line parameters for 31 species and their isotopomers that are significant for terrestrial atmospheric studies This line-by-line portion of HITRAN presently contains about 709,000 transitions between 0 and 23,000/cm and contains three molecules not present in earlier versions: COF2, SF6, and H2S The HITRAN compilation has substantially more information on chlorofluorocarbons and other molecular species that exhibit dense spectra which are not amenable to line-by-line representation The user access of the database has been advanced, and new media forms are now available for use on personal computers

1,442 citations