Author
R. Barber
Bio: R. Barber is an academic researcher from IBM. The author has contributed to research in topics: Image texture & Query language. The author has an hindex of 8, co-authored 8 publications receiving 3683 citations.
Papers
More filters
IBM1
TL;DR: The main algorithms for color texture, shape and sketch query that are presented, show example query results, and discuss future directions are presented.
Abstract: In the query by image content (QBIC) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical (`Give me other images that contain a tumor with a texture like this one'), photo-journalism (`Give me images that have blue at the top and red at the bottom'), and many others in art, fashion, cataloging, retailing, and industry. Key issues include derivation and computation of attributes of images and objects that provide useful query functionality, retrieval methods based on similarity as opposed to exact match, query by image example or user drawn image, the user interfaces, query refinement and navigation, high dimensional database indexing, and automatic and semi-automatic database population. We currently have a prototype system written in X/Motif and C running on an RS/6000 that allows a variety of queries, and a test database of over 1000 images and 1000 objects populated from commercially available photo clip art images. In this paper we present the main algorithms for color texture, shape and sketch query that we use, show example query results, and discuss future directions.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
2,127 citations
01 Jul 1994
TL;DR: A set of novel features and similarity measures allowing query by image content, together with the QBIC system, and a new theorem that makes efficient filtering possible by bounding the non-Euclidean, full cross-term quadratic distance expression with a simple Euclidean distance.
Abstract: In the QBIC (Query By Image Content) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, shape, position, and dominant edges of image objects and regions. Potential applications include medical (“Give me other images that contain a tumor with a texture like this one”), photo-journalism (“Give me images that have blue at the top and red at the bottom”), and many others in art, fashion, cataloging, retailing, and industry. We describe a set of novel features and similarity measures allowing query by image content, together with the QBIC system we implemented. We demonstrate the effectiveness of our system with normalized precision and recall experiments on test databases containing over 1000 images and 1000 objects populated from commercially available photo clip art images, and of images of airplane silhouettes. We also present new methods for efficient processing of QBIC queries that consist of filtering and indexing steps. We specifically address two problems: (a) non Euclidean distance measures; and (b) the high dimensionality of feature vectors. For the first problem, we introduce a new theorem that makes efficient filtering possible by bounding the non-Euclidean, full cross-term quadratic distance expression with a simple Euclidean distance. For the second, we illustrate how orthogonal transforms, such as Karhunen Loeve, can help reduce the dimensionality of the search space. Our methods are general and allow some “false hits” but no false dismissals. The resulting QBIC system offers effective retrieval using image content, and for large image databases significant speedup over straightforward indexing alternatives. The system is implemented in X/Motif and C running on an RS/6000.
1,285 citations
IBM1
TL;DR: Two sets of algorithms for semi-automatic identification of image objects during database population are described, improving the speed and usability of this manually-intensive step.
Abstract: Advances in technologies for scanning, networking, and CD-ROM, lower prices for large disk storage, and acceptance of common image compression and file formats have contributed to an increase in the number, size, and uses of on-line image collections. New tools are needed to help users create, manage, and retrieve images from these collections. We are developing QBIC (query by image content), a prototype system that allows a user to create and query image databases in which the image content -- the colors, textures, shapes, and layout of images and the objects they contain -- is used as the basis of queries. This paper describes two sets of algorithms in QBIC. The first are methods that allow `query by color drawing,' a form of query in which a user draws an approximate color version of an image, and similar images are retrieved. These are automatic algorithms in the sense that no user action is necessary during database population. Secondly, we describe algorithms for semi-automatic identification of image objects during database population, improving the speed and usability of this manually-intensive step. Once outlined, detailed queries on the content-properties of these individual objects can be made at query time.
95 citations
IBM1
TL;DR: An improved method based on energy minimizing active contours or `snakes' is used to outline objects on images in an interactive environment using a two-stage algorithm and gives the user the possibility of incremental contour tracking, thus providing feedback on the refinement process.
Abstract: The purpose of our work is to outline objects on images in an interactive environment. We use an improved method based on energy minimizing active contours or `snakes.' Kass et al., proposed a variational technique; Amini used dynamic programming; and Williams and Shah introduced a fast, greedy algorithm. We combine the advantages of the latter two methods in a two-stage algorithm. The first stage is a greedy procedure that provides fast initial convergence. It is enhanced with a cost term that extends over a large number of points to avoid oscillations. The second stage, when accuracy becomes important, uses dynamic programming. This step is accelerated by the use of alternating search neighborhoods and by dropping stable points from the iterations. We have also added several features for user interaction. First, the user can define points of high confidence. Mathematically, this results in an extra cost term and, in that way, the robustness in difficult areas (e.g., noisy edges, sharp corners) is improved. We also give the user the possibility of incremental contour tracking, thus providing feedback on the refinement process. The algorithm has been tested on numerous photographic clip art images and extensive tests on medical images are in progress.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
68 citations
IBM1
TL;DR: This paper presents QBIC indexing algorithms that allow "multi-*" queries-queries on large image collections involving multifeatures of each image as a whole and of multiple objects within each image to run efficiently.
Abstract: We describe how the QBIC (Query By Image Content) system handles "multi-*" queries-queries on large image collections involving multifeatures of each image as a whole and of multiple objects within each image. The queries are based on properties of image content-such as colors, textures, shapes, and edges. The system computes a set of features to describe the above properties, uses distance-like measures on the features to provide similarity based retrieval, and has a graphical interface that enable users pose queries visually. In this paper, we present QBIC indexing algorithms that allow these "multi-*" queries to run efficiently.
45 citations
Cited by
More filters
TL;DR: This paper investigates the properties of a metric between two distributions, the Earth Mover's Distance (EMD), for content-based image retrieval, and compares the retrieval performance of the EMD with that of other distances.
Abstract: We investigate the properties of a metric between two distributions, the Earth Mover's Distance (EMD), for content-based image retrieval. The EMD is based on the minimal cost that must be paid to transform one distribution into the other, in a precise sense, and was first proposed for certain vision problems by Peleg, Werman, and Rom. For image retrieval, we combine this idea with a representation scheme for distributions that is based on vector quantization. This combination leads to an image comparison framework that often accounts for perceptual similarity better than other previously proposed methods. The EMD is based on a solution to the transportation problem from linear optimization, for which efficient algorithms are available, and also allows naturally for partial matching. It is more robust than histogram matching techniques, in that it can operate on variable-length representations of the distributions that avoid quantization and other binning problems typical of histograms. When used to compare distributions with the same overall mass, the EMD is a true metric. In this paper we focus on applications to color and texture, and we compare the retrieval performance of the EMD with that of other distances.
4,593 citations
23 May 1998
TL;DR: In this paper, the authors present two algorithms for the approximate nearest neighbor problem in high-dimensional spaces, for data sets of size n living in R d, which require space that is only polynomial in n and d.
Abstract: We present two algorithms for the approximate nearest neighbor problem in high-dimensional spaces. For data sets of size n living in R d , the algorithms require space that is only polynomial in n and d, while achieving query times that are sub-linear in n and polynomial in d. We also show applications to other high-dimensional geometric problems, such as the approximate minimum spanning tree. The article is based on the material from the authors' STOC'98 and FOCS'01 papers. It unifies, generalizes and simplifies the results from those papers.
4,478 citations
TL;DR: Comparisons with other multiresolution texture features using the Brodatz texture database indicate that the Gabor features provide the best pattern retrieval accuracy.
Abstract: Image content based retrieval is emerging as an important research area with application to digital libraries and multimedia databases. The focus of this paper is on the image processing aspects and in particular using texture information for browsing and retrieval of large image data. We propose the use of Gabor wavelet features for texture analysis and provide a comprehensive experimental evaluation. Comparisons with other multiresolution texture features using the Brodatz texture database indicate that the Gabor features provide the best pattern retrieval accuracy. An application to browsing large air photos is illustrated.
4,017 citations
IBM1
TL;DR: The Query by Image Content (QBIC) system as discussed by the authors allows queries on large image and video databases based on example images, user-constructed sketches and drawings, selected color and texture patterns, camera and object motion, and other graphical information.
Abstract: Research on ways to extend and improve query methods for image databases is widespread. We have developed the QBIC (Query by Image Content) system to explore content-based retrieval methods. QBIC allows queries on large image and video databases based on example images, user-constructed sketches and drawings, selected color and texture patterns, camera and object motion, and other graphical information. Two key properties of QBIC are (1) its use of image and video content-computable properties of color, texture, shape and motion of images, videos and their objects-in the queries, and (2) its graphical query language, in which queries are posed by drawing, selecting and other graphical means. This article describes the QBIC system and demonstrates its query capabilities. QBIC technology is part of several IBM products. >
3,957 citations
Proceedings Article•
07 Sep 1999TL;DR: Experimental results indicate that the novel scheme for approximate similarity search based on hashing scales well even for a relatively large number of dimensions, and provides experimental evidence that the method gives improvement in running time over other methods for searching in highdimensional spaces based on hierarchical tree decomposition.
Abstract: The nearestor near-neighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over high-dimensional data, e.g., image databases, document collections, time-series databases, and genome databases. Unfortunately, all known techniques for solving this problem fall prey to the \curse of dimensionality." That is, the data structures scale poorly with data dimensionality; in fact, if the number of dimensions exceeds 10 to 20, searching in k-d trees and related structures involves the inspection of a large fraction of the database, thereby doing no better than brute-force linear search. It has been suggested that since the selection of features and the choice of a distance metric in typical applications is rather heuristic, determining an approximate nearest neighbor should su ce for most practical purposes. In this paper, we examine a novel scheme for approximate similarity search based on hashing. The basic idea is to hash the points Supported by NAVY N00014-96-1-1221 grant and NSF Grant IIS-9811904. Supported by Stanford Graduate Fellowship and NSF NYI Award CCR-9357849. Supported by ARO MURI Grant DAAH04-96-1-0007, NSF Grant IIS-9811904, and NSF Young Investigator Award CCR9357849, with matching funds from IBM, Mitsubishi, Schlumberger Foundation, Shell Foundation, and Xerox Corporation. Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment. Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, 1999. from the database so as to ensure that the probability of collision is much higher for objects that are close to each other than for those that are far apart. We provide experimental evidence that our method gives signi cant improvement in running time over other methods for searching in highdimensional spaces based on hierarchical tree decomposition. Experimental results also indicate that our scheme scales well even for a relatively large number of dimensions (more than 50).
3,705 citations