scispace - formally typeset
Search or ask a question
Author

R. Broermann

Bio: R. Broermann is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Endothelial stem cell & Antigen. The author has an hindex of 1, co-authored 1 publications receiving 189 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that MECA‐32 antigen expression is temporally and spatially correlated with the development of the blood brain barrier.
Abstract: Few markers specific for mouse endothelium exist. We describe here one such marker, MECA-32, a monoclonal antibody which shows high specificity for mouse endothelium in both embryonic and mature tissues. The MECA-32 antigen has a M(r) of 50-55 x 10(3) under reducing conditions and M(r) of 100-120 x 10(3) under nonreducing conditions. It is expressed on most endothelial cells in the embryonic and in the adult mouse, with the exception of the brain, skeletal, and cardiac muscle, where it has a more restricted distribution. In skeletal and cardiac muscle only small arterioles and venules express the MECA-32 antigen, while in the brain its expression is negatively correlated with the differentiation of the vasculature to form the blood brain barrier. Interestingly, during embryonic development the antigen occurs on the brain vasculature up to day 16 of gestation (E16), whereupon it disappears. The embryonic brain is an avascular organ anlage which is vascularized by ingrowth of external blood vessels. Differentiation of the vasculature to form the blood brain barrier occurs at approximately E16 in the mouse. This differentiation correlates with the downregulation of MECA-32 antigen expression. Between E12 and E16 MECA-32 detects most endothelial cell surfaces of the blood vessels in the brain. No MECA-32 antigen is found in the brain at E17 or any later stage of development with the exception of the vasculature of the circumventricular organs. The results suggest that MECA-32 antigen expression is temporally and spatially correlated with the development of the blood brain barrier.

206 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that VEGF‐C‐induced lymphangiogenesis mediates tumour cell dissemination and the formation of lymph node metastases.
Abstract: Metastasis is a frequent and lethal complication of cancer. Vascular endothelial growth factor-C (VEGF-C) is a recently described lymphangiogenic factor. Increased expression of VEGF-C in primary tumours correlates with dissemination of tumour cells to regional lymph nodes. However, a direct role for VEGF-C in tumour lymphangiogenesis and subsequent metastasis has yet to be demonstrated. Here we report the establishment of transgenic mice in which VEGF-C expression, driven by the rat insulin promoter (Rip), is targeted to beta-cells of the endocrine pancreas. In contrast to wild-type mice, which lack peri-insular lymphatics, RipVEGF-C transgenics develop an extensive network of lymphatics around the islets of Langerhans. These mice were crossed with Rip1Tag2 mice, which develop pancreatic beta-cell tumours that are neither lymphangiogenic nor metastatic. Double-transgenic mice formed tumours surrounded by well developed lymphatics, which frequently contained tumour cell masses of beta-cell origin. These mice frequently developed pancreatic lymph node metastases. Our findings demonstrate that VEGF-C-induced lymphangiogenesis mediates tumour cell dissemination and the formation of lymph node metastases.

942 citations

Journal ArticleDOI
TL;DR: The hypothesis that terminally differentiated brain parenchymal microglia are derived from cells originating from the yolk sac whose progeny actively proliferates in situ during development is supported.

714 citations

Journal ArticleDOI
TL;DR: Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature, and this findings may open new therapeutic avenues to modulate endothelial barrier function.
Abstract: The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/β-catenin (β-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of β-cat in vivo enhances barrier maturation, whereas inactivation of β-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of β-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of β-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown.

657 citations

Journal ArticleDOI
TL;DR: Current knowledge on the cellular and molecular basis of the functional and dysfunctional blood–CNS barriers with focus on CNS autoimmune inflammation is described.
Abstract: The central nervous system (CNS) is tightly sealed from the changeable milieu of blood by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB). While the BBB is considered to be localized at the level of the endothelial cells within CNS microvessels, the BCSFB is established by choroid plexus epithelial cells. The BBB inhibits the free paracellular diffusion of water-soluble molecules by an elaborate network of complex tight junctions (TJs) that interconnects the endothelial cells. Combined with the absence of fenestrae and an extremely low pinocytotic activity, which inhibit transcellular passage of molecules across the barrier, these morphological peculiarities establish the physical permeability barrier of the BBB. In addition, a functional BBB is manifested by a number of permanently active transport mechanisms, specifically expressed by brain capillary endothelial cells that ensure the transport of nutrients into the CNS and exclusion of blood-borne molecules that could be detrimental to the milieu required for neural transmission. Finally, while the endothelial cells constitute the physical and metabolic barrier per se, interactions with adjacent cellular and acellular layers are prerequisites for barrier function. The fully differentiated BBB consists of a complex system comprising the highly specialized endothelial cells and their underlying basement membrane in which a large number of pericytes are embedded, perivascular antigen-presenting cells, and an ensheathment of astrocytic endfeet and associated parenchymal basement membrane. Endothelial cell morphology, biochemistry, and function thus make these brain microvascular endothelial cells unique and distinguishable from all other endothelial cells in the body. Similar to the endothelial barrier, the morphological correlate of the BCSFB is found at the level of unique apical tight junctions between the choroid plexus epithelial cells inhibiting paracellular diffusion of water-soluble molecules across this barrier. Besides its barrier function, choroid plexus epithelial cells have a secretory function and produce the CSF. The barrier and secretory function of the choroid plexus epithelial cells are maintained by the expression of numerous transport systems allowing the directed transport of ions and nutrients into the CSF and the removal of toxic agents out of the CSF. In the event of CNS pathology, barrier characteristics of the blood-CNS barriers are altered, leading to edema formation and recruitment of inflammatory cells into the CNS. In this review we will describe current knowledge on the cellular and molecular basis of the functional and dysfunctional blood-CNS barriers with focus on CNS autoimmune inflammation.

631 citations

Journal ArticleDOI
12 Feb 2009-Nature
TL;DR: It is demonstrated that the haemangioblast generates haematopoietic cells through the formation of a haemogenic endothelium intermediate, providing the first direct link between these two precursor populations.
Abstract: It has been proposed that during embryonic development haematopoietic cells arise from a mesodermal progenitor with both endothelial and haematopoietic potential called the haemangioblast. A conflicting theory instead associates the first haematopoietic cells with a phenotypically differentiated endothelial cell that has haematopoietic potential (that is, a haemogenic endothelium). Support for the haemangioblast concept was initially provided by the identification during mouse embryonic stem cell differentiation of a clonal precursor, the blast colony-forming cell (BL-CFC), which gives rise to blast colonies with both endothelial and haematopoietic components. Although recent studies have now provided evidence for the presence of this bipotential precursor in vivo, the precise mechanism for generation of haematopoietic cells from the haemangioblast still remains completely unknown. Here we demonstrate that the haemangioblast generates haematopoietic cells through the formation of a haemogenic endothelium intermediate, providing the first direct link between these two precursor populations. The cell population containing the haemogenic endothelium is transiently generated during BL-CFC development. This cell population is also present in gastrulating mouse embryos and generates haematopoietic cells on further culture. At the molecular level, we demonstrate that the transcription factor Tal1 (also known as Scl; ref. 10) is indispensable for the establishment of this haemogenic endothelium population whereas the core binding factor Runx1 (also known as AML1; ref. 11) is critical for generation of definitive haematopoietic cells from haemogenic endothelium. Together our results merge the two a priori conflicting theories on the origin of haematopoietic development into a single linear developmental process.

608 citations