scispace - formally typeset
Search or ask a question
Author

R. Consden

Bio: R. Consden is an academic researcher. The author has contributed to research in topics: Identification (biology) & Cystine. The author has an hindex of 7, co-authored 7 publications receiving 1765 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Albanese, A. A. & Frankston, J. E. (1945).
Abstract: Albanese, A. A. & Frankston, J. E. (1945). John8 Hopk. Ho8p. Bull. 77, 61. Astwood, E. B., Bissell, A. & Hughes, A. M. (1945). Endocrinology, 37, 456. Bergmann, M. ,& Zervas, L. (1928). Biochem. Z. 203, 280. Burroughs, E. W., Burroughs, H. S. & Mitchell, H. H. (1940). J. Nutrit. 19, 363. Conrad, R. M. & Berg, C. P. (1936). J. biol. Chem. 117, 351. Cox, G. J. & Rose, W. L. (1926). J. biol. Chem. 68, 781. Eagles, B. A. & Cox, G. J. (1928). J. biol. Chem. 80, 249. Fishman, J. B. & White, A. (1936). J. biol. Chem. 113, 174. Fuller, A. T., Neuberger, A. & Webster, T. A. (1946). To be published. Gerngross, 0. (1920). Hoppe-Seyl. Z. 108, 50. Gillespie, M., Neuberger, A. & Webster, T. A. (1945). Biochem. J. 39, 203. Glynn, L. E., Himsworth, P. H. & Neuberger, A. (1945). Brit. J. exp. Path. 26, 326. Harington, C. R. & Overhoff, J. (1933). Biochem. J. 27, 338. Harrow, B. & Sherwin, C. P. (1926). J. biol. Chemn. 70, 683. Jackson, R. W. (1929). J. biol. Chem. 84, 1. Maun, M. E., Cahill, W. H. & Davis, R. M. (1946). Arch. Path. 41, 25. Neuberger, A. & Sanger, F. (1943). Biochem. J. 37, 515. Rose, W. C. (1938). Physiol. Rev. 18, 109. Rose, W. C. & Cox, G. I. (1924). J. biol. Chem. 61, 747. Rose, W. C., Haines, W. C., Johrlson, J. E. & Warner, D. T. (1943). J. biol. Chem. 148, 457. Sakami, W. & Wilson, D. W. (1944). J. biol. Chem. 154, 215. Windaus, A. (1907). Ber. dt8ch. chem. Ge8. 40, 799. Woolley, D. W. (1945). J. biol. Chem. 159, 753.

43 citations

Journal ArticleDOI
TL;DR: The Hoppe-Seyl bottleneck, a type of “spatially aggregating” disease, was first described in detail in a paper published in 1946 by the then-chairman of the National Academy of Sciences, George W. Kaiser, who was himself a victim of the disease himself.
Abstract: Bamberger, E. & Pyman, F. L. (1909). Ber. dt8ch. chem. Ge8. 42, 2310. Baumann, E. & Preusse, C. (1879). Hoppe-Seyl. Z. 3, 156. Bratton, A. C. & Marshall, J. K. Jr. (1939). J. biol. Chem. 128, 537. Bray, H. G., James, S. P., Ryman, B. E. & Thorpe, W. V. (1948). Biochem. J. 42, 274. Bray, H. G., Neale, F. C. & Thorpe, W. V. (1946a). Biochem. J. 40, 134. Bray, H. G., Neale, F. C. & Thorpe, W. V. (1946 b). Biochem. J. 40, 406. Bray, H. G., Ryman, B. E. & Thorpe, W. V. (1947). Biochem. J. 41, 212. Bruce, H. M. & Parkes, A. S. (1946). J. Hyg., Camb., 44, 501. Eckert, H. W. (1943). J. biol. Chem. 148, 197. Einhorn, A. & Pfyl, B. (1900). Liebig8 Ann. 311, 43. Ellinger, A. & Hensel, M. (1914). Hoppe-Seyl. Z. 91, 21. Fildes, P. (1940). Lancet, 1, 955. Folin, 0. (1905-6). J. biol. Chem. 1, 131. Friedlinder, P. (1916). Ber. dt8ch. chem. Gme. 49, 964. Griess, P. (1878). Ber. dt8ch. chem. Gme. 11, 1734. Griess, P. (1887). Ber. dt8ch. chem. Gee. 20, 407. Harrow, B., Mazur, A. & Sherwin, C. P. (1933). J. biol. Chem. 102, 35. Hensel, M. (1914). Hoppe-Seyl. Z. 93, 401. Hildebrandt, H. (1903). Beitr. chem. Phy8iol. Path. 3, 365. Hirsch, J. (1942). Science, 96, 139. Horn, F. (1936a). Hoppe-Seyl. Z. 238, 84. Horn, F. (1936b). Hoppe-Seyl. Z. 242, 23. Jacobs, W. A. & Heidelberger, M. (1917). J. Amer. chem. Soc. 39, 1437. Jaffe, M. & Hilbert, P. (1888). Hoppe-Seyl. Z. 12, 295. Kaiser, A. (1885). Ber. dt8ch. chem. Gme. 18, 2946. Kalle and Co. (1911). D.R.-P. 232, 277; Chem. Zbl. 1, 1019. Keller, 0. (1908). Arch. Pharm., Bert., 246, 1. Kleine, F. K. (1896-7). Hoppe-Seyl. Z. 22, 327. Kohl, M. F. F. & Flynn, L. M. (1941). Proe. Soc. exp. Biol., N. Y., 47, 470. Kossel, A. (1880). Hoppe-Seyl. Z. 4, 296. Limpricht, H. (1891). Liebigp Ann. 263; 234. Meldola, R., Foster, H. S. & Brightman, R. (1917). J. chem. Soc. i11, 533. Mitsuba, K. & Ichihara, K. (1927). Hoppe-Seyl. Z. 164, 244. Muenzen, J. B., Cerecedo, L. R. & Sherwin, C. P. (1926). J. biol. Chem. 67, 469. Quick, A. J. (1932). J. biol. Chem. 96, 83. Salkowski, E. (1872). Ber. dtsch. chem. Ges. 5, 637. Salkowski, E. (1873). Ber. dt8ch. chem. Ge8. 6, 744. Salkowski, E. (1882). Hoppe-Setl. Z. 7, 93. Schmidt, C. L. A. & Allen, E. G. (1920). J. biol. Chem. 42, 55. Sieburg, E. (1914). Hoppe-Seyl. Z. 92, 331. Stubbs, A. L. & Williams, R. T. (1947). Biochem. J. 41, xlix. Vile, J. (1892). C.R. Acad. Sci., Paris, 114, 228. Woods, D. D. (1940). Brit. J. exp. Path. 21, 74. Zahn, 0. (1900). J. prakt. Chem. (2), 61, 532. Zehender, F. (1943). Hetv. chim. Acta, 26, 1338.

35 citations


Cited by
More filters
Journal ArticleDOI
31 Dec 1949-Nature
TL;DR: Progress in this important field has depended upon the development of methods for identifying and determining the individual esters present in mixtures, but these methods frequently fail to yield diagnostic results.
Abstract: PHOSPHORIC esters play a central part in the biological world bY linking processes of respiration and fermentation with other essential cellular reactions. More tnan twenty substances of this group, mainly sugars and related substances esterified with phosphoric acid, are known to form intermediate in the network of enzymic reactions associated with the breakdown and interconversion of carbohydrates in plants and animals. Both in the intact cell and in the isolated enzyme systems in which these reactions are studied, phosphoric esters usually occur in mixtures, and progress in this important field has depended upon the development of methods for identifying and determining the individual esters present in such mixtures. Existing methods of analysis depend mainly upon the fractionation of salts of the esters and the selective hydrolysis of some of them, under standard conditions, these procedures being supplemented when possible by methods based on more specific reactions given by particular esters. Except when applied to certain relatively simple mixtures, these methods frequently fail to yield diagnostic results.

1,804 citations

Journal ArticleDOI
10 Sep 1949-Nature
TL;DR: The use of ammoniacal silver nitrate solution as a spraying reagent for revealing the presence of sugars on filter-paper chromatograms has the advantage of general application but has a corresponding disadvantage in reacting with a very wide range of reducing substances other than the sugars, including various impurities commonly present in such solvents as phenol and collidine.
Abstract: THE use of ammoniacal silver nitrate solution as a spraying reagent for revealing the presence of sugars on filter-paper chromatograms1 has the advantage of general application ; but it has a corresponding disadvantage in reacting with a very wide range of reducing substances other than the sugars, including various impurities commonly present in such solvents as phenol and collidine. Two-dimensional chromatograms are often rather unsatisfactory when ammoniacal silver nitrate is used, because (a) a rather large amount of the sugar mixture is needed and this increases the effect of interfering substances, (b) it is necessary to apply the spray as an aqueous solution, and unless the spraying is very rapid and uniform, the sugar spots migrate from wet to dry regions on the filter paper.

1,361 citations