scispace - formally typeset
Search or ask a question
Author

R.D. Arnell

Bio: R.D. Arnell is an academic researcher from University of Salford. The author has contributed to research in topics: Sputter deposition & Coating. The author has an hindex of 31, co-authored 74 publications receiving 4109 citations.


Papers
More filters
Journal ArticleDOI
01 Mar 2000-Vacuum
TL;DR: Magnetron sputtering has become the process of choice for the deposition of a wide range of industrially important coatings, such as hard, wear-resistant, low friction, corrosion resistant, and decorative coatings as discussed by the authors.

1,640 citations

Journal ArticleDOI
D.P. Monaghan1, D.G. Teer, P.A. Logan, Ihsan Efeoglu1, R.D. Arnell1 
TL;DR: Amorphous hydrogenerated carbon films containing a small amount of metal (Me:C-H) have been deposited by closed field unbalanced magnetron sputter ion plating.
Abstract: Amorphous hydrogenerated carbon films containing a small amount of metal (Me:C-H) have been deposited by closed field unbalanced magnetron sputter ion plating. The films have graded film compositions to optimise the adhesion to the substrates, and multilayer TiC/Ti:C-H films have also been deposited. The films have excellent properties: very high measured microhardness (more than 4000 H v ), excellent adhesion ( L c 115–125 N), coefficients of friction against WC of less than 0.2, and volumetric wear rates one fifth that of titanium nitride. The coating procedure is ideally suited to the system used, and many applications for the films are already realised.

169 citations

Journal ArticleDOI
TL;DR: In this paper, the authors outline the historical development of sputtering techniques up to the recent development of closed-field unbalanced magnetron sputtering (CFUBMS) and give examples of the use of CFUBMS to develop advanced coatings for industrial applications.
Abstract: The paper will outline the historical development of sputtering techniques up to the recent development of closed-field unbalanced magnetron sputtering (CFUBMS). Examples will then be given of the use of CFUBMS to develop advanced coatings for industrial applications, including corrosion resistant coatings for aerospace, hard ceramic coatings for wear resistance, and coatings with novel thermal and chemical properties. Finally, current development in the technology and in understanding of the principles of the process will be described.

149 citations

Journal ArticleDOI
TL;DR: In this paper, the distribution of bombarding ion energies, their fluxes and energy fluxes at a substrate in an asymmetric bi-polar pulsed DC magnetron have been determined.
Abstract: Using an energy-resolved mass spectrometer and a time-resolved Langmuir probe, the distribution of bombarding ion energies, their fluxes and energy fluxes at a substrate in an asymmetric bi-polar pulsed DC magnetron have been determined. The discharge was operated in Ar at a pressure of 0.53 Pa with a Ti target and pulsed DC frequencies of 100 and 350 kHz with a range of duty cycles (from 50 to 96%). At 100 kHz, the Ar+and Ti+ time-averaged ion energy distribution functions (IEDFs) reveal three peaks, which are at low energy (<10 eV), in a mid-range (20-50 eV) and at high energy (60-100 eV). We correlate these peaks with distinct phases of the discharge voltage. At 350 kHz the IEDFs show four peaks reflecting a more complex voltage waveform. The low-energy ions are generated in the `on' phase when the plasma potential is typically a few volts above ground. The Ti+ energy spectra show a remnant of the original sputter-neutral energy distribution function. The mid-range ions are produced in the quiescent region of the voltage reverse phase, when the plasma potential is raised globally a few volts above the cathode potential, typically 10-30 V. The high-energy ions are generated in a period of ~0.3 µs, during the discharge voltage overshoot, when the target potential rises to typically over +140 V. However, given the time resolution of the Langmuir probe (0.5 µs), it is not possible to determine if plasma potential is lifted globally to this high potential or only close to the cathode. At 350 kHz, these `fast' ions make up to about a quarter of the total ion flux at the substrate and an upper bound transient power flux of about 2.5 times the maximum delivered in the `on' phase. The total power flux to a substrate in the sustained phase of the discharge is found to increase with frequency and reverse time.

143 citations

Journal ArticleDOI
01 Apr 2000-Wear
TL;DR: In this article, the effect of surface roughness on the wear behavior of diamond-like carbon (DLC) coatings was investigated on a ball-on-disk wear rig in dry air.

129 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2000-Vacuum
TL;DR: Magnetron sputtering has become the process of choice for the deposition of a wide range of industrially important coatings, such as hard, wear-resistant, low friction, corrosion resistant, and decorative coatings as discussed by the authors.

1,640 citations

Journal ArticleDOI
TL;DR: The physicochemical characteristics of spinels such as their compositions, structures, morphologies, defects, and substrates have been rationally regulated through various approaches and can yield spinels with improved ORR/OER catalytic activities, which can further accelerate the speed, prolong the life, and narrow the polarization of fuel cells, metal-air batteries, and water splitting devices.
Abstract: Spinels with the formula of AB2O4 (where A and B are metal ions) and the properties of magnetism, optics, electricity, and catalysis have taken significant roles in applications of data storage, biotechnology, electronics, laser, sensor, conversion reaction, and energy storage/conversion, which largely depend on their precise structures and compositions. In this review, various spinels with controlled preparations and their applications in oxygen reduction/evolution reaction (ORR/OER) and beyond are summarized. First, the composition and structure of spinels are introduced. Then, recent advances in the preparation of spinels with solid-, solution-, and vapor-phase methods are summarized, and new methods are particularly highlighted. The physicochemical characteristics of spinels such as their compositions, structures, morphologies, defects, and substrates have been rationally regulated through various approaches. This regulation can yield spinels with improved ORR/OER catalytic activities, which can furth...

1,036 citations

Journal ArticleDOI
TL;DR: In this article, the development and application of magnetron sputtering systems for ionized physical vapor deposition (IPVD) is reviewed, and the application of a secondary discharge, inductively coupled plasma magnetron (ICP-MS), microwave amplified magnetron, and self-sustained sputtering (SSS) is discussed as well as the hollow cathode magnetron discharges.

972 citations

Journal ArticleDOI
TL;DR: High power pulsed magnetron sputtering (HPPMS) is an emerging technology that has gained substantial interest among academics and industrials alike as discussed by the authors, also known as HIPIMS (high power impulse...
Abstract: High power pulsed magnetron sputtering (HPPMS) is an emerging technology that has gained substantial interest among academics and industrials alike. HPPMS, also known as HIPIMS (high power impulse ...

846 citations

Journal ArticleDOI
TL;DR: A new kind of transparent conducting electrode is produced that exhibits both superior optoelectronic performances and remarkable mechanical flexibility under both stretching and bending stresses.
Abstract: Transparent conducting electrodes are essential components for numerous flexible optoelectronic devices, including touch screens and interactive electronics. Thin films of indium tin oxide-the prototypical transparent electrode material-demonstrate excellent electronic performances, but film brittleness, low infrared transmittance and low abundance limit suitability for certain industrial applications. Alternatives to indium tin oxide have recently been reported and include conducting polymers, carbon nanotubes and graphene. However, although flexibility is greatly improved, the optoelectronic performance of these carbon-based materials is limited by low conductivity. Other examples include metal nanowire-based electrodes, which can achieve sheet resistances of less than 10Ω □(-1) at 90% transmission because of the high conductivity of the metals. To achieve these performances, however, metal nanowires must be defect-free, have conductivities close to their values in bulk, be as long as possible to minimize the number of wire-to-wire junctions, and exhibit small junction resistance. Here, we present a facile fabrication process that allows us to satisfy all these requirements and fabricate a new kind of transparent conducting electrode that exhibits both superior optoelectronic performances (sheet resistance of ~2Ω □(-1) at 90% transmission) and remarkable mechanical flexibility under both stretching and bending stresses. The electrode is composed of a free-standing metallic nanotrough network and is produced with a process involving electrospinning and metal deposition. We demonstrate the practical suitability of our transparent conducting electrode by fabricating a flexible touch-screen device and a transparent conducting tape.

842 citations