scispace - formally typeset
R

R. Dwayne Lunsford

Researcher at National Institutes of Health

Publications -  11
Citations -  18885

R. Dwayne Lunsford is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Human microbiome & Human Microbiome Project. The author has an hindex of 6, co-authored 9 publications receiving 16719 citations.

Papers
More filters
Journal ArticleDOI

Structure, function and diversity of the healthy human microbiome

Curtis Huttenhower, +253 more
- 14 Jun 2012 - 
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Journal Article

Structure, function and diversity of the healthy human microbiome

Curtis Huttenhower, +247 more
- 01 Jun 2012 - 
TL;DR: The Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far, finding the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals.
Journal ArticleDOI

A framework for human microbiome research

Barbara A. Methé, +253 more
- 14 Jun 2012 - 
TL;DR: The Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomics data available to the scientific community as mentioned in this paper.
Journal ArticleDOI

Insertional inactivation of genes responsible for the D-alanylation of lipoteichoic acid in Streptococcus gordonii DL1 (Challis) affects intrageneric coaggregations.

TL;DR: It is hypothesized that d-alanyl LTA may provide binding sites for the putative 100-kDa adhesin and scaffolding for the proper presentation of thisAdhesin to mediate intrageneric coaggregation.