scispace - formally typeset
Search or ask a question
Author

R. Eric Stratmann

Bio: R. Eric Stratmann is an academic researcher from Rice University. The author has contributed to research in topics: Density functional theory & Time-dependent density functional theory. The author has an hindex of 5, co-authored 5 publications receiving 4812 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, time-dependent density-functional (TDDFT) methods are applied within the adiabatic approximation to a series of molecules including C70, and they provide an efficient approach for treating frequency-dependent response properties and electronic excitation spectra of large molecules.
Abstract: Time-dependent density-functional (TDDFT) methods are applied within the adiabatic approximation to a series of molecules including C70. Our implementation provides an efficient approach for treating frequency-dependent response properties and electronic excitation spectra of large molecules. We also present a new algorithm for the diagonalization of large non-Hermitian matrices which is needed for hybrid functionals and is also faster than the widely used Davidson algorithm when employed for the Hermitian case appearing in excited energy calculations. Results for a few selected molecules using local, gradient-corrected, and hybrid functionals are discussed. We find that for molecules with low lying excited states TDDFT constitutes a considerable improvement over Hartree–Fock based methods (like the random phase approximation) which require comparable computational effort.

4,559 citations

Journal ArticleDOI
TL;DR: A new set of atomic partition functions (weight scheme) for density functional quadratures that yields similar accuracy but is substantially faster than the widely used algorithm of Becke is presented.

232 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic transition energies for formaldehyde, acetaldehyde and acetone were calculated via time-dependent density functional theory using a series of hybrid density functionals, and the B3P86 functional was found to give the best agreement with the experimental values.

224 citations

Journal ArticleDOI
TL;DR: In this paper, Stratmann et al. used the Gaussian very Fast Multipole Method (GvFMM) with very short multipole expansions for the Coulomb contribution to the Coupled-Perturbed Kohn-Sham equations.
Abstract: Using a previously introduced weight scheme, microbatching, and grid compression [R. E. Stratmann, G. E. Scuseria and M. J. Frisch, Chem. Phys. Lett. 257, 213 (1996)], we significantly speed up the numerical integration of the exchange-correlation contribution to the Coupled-Perturbed Kohn–Sham equations. In addition, we find that the nature of the integrand is such that it is possible to employ substantially fewer grid points in the quadrature and to use the Gaussian very Fast Multipole Method (GvFMM) with very short multipole expansions for the Coulomb contribution, with negligible loss in accuracy. As a representative example, the computational demand for the exchange-correlation portion of a coronene (C24H12) frequency calculation with a 3-21G basis is reduced by more than one order of magnitude. The overall speed up achieved in this calculation is between a factor of 4 to 6, depending on the specific functional. We also present sample calculations using polarized bases, gradient-corrected functionals, and on even larger systems (C54H18 and C96H24), to illustrate the various effects and improvements that we have accomplished.

83 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Abstract: We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.

22,326 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.
Abstract: We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF-typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation-strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time-dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

8,490 citations

Journal ArticleDOI
TL;DR: An overview of NWChem is provided focusing primarily on the core theoretical modules provided by the code and their parallel performance, as well as Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures.

4,666 citations

Journal ArticleDOI
TL;DR: In this paper, time-dependent density-functional (TDDFT) methods are applied within the adiabatic approximation to a series of molecules including C70, and they provide an efficient approach for treating frequency-dependent response properties and electronic excitation spectra of large molecules.
Abstract: Time-dependent density-functional (TDDFT) methods are applied within the adiabatic approximation to a series of molecules including C70. Our implementation provides an efficient approach for treating frequency-dependent response properties and electronic excitation spectra of large molecules. We also present a new algorithm for the diagonalization of large non-Hermitian matrices which is needed for hybrid functionals and is also faster than the widely used Davidson algorithm when employed for the Hermitian case appearing in excited energy calculations. Results for a few selected molecules using local, gradient-corrected, and hybrid functionals are discussed. We find that for molecules with low lying excited states TDDFT constitutes a considerable improvement over Hartree–Fock based methods (like the random phase approximation) which require comparable computational effort.

4,559 citations