scispace - formally typeset
Search or ask a question
Author

R. F. Hampson

Bio: R. F. Hampson is an academic researcher from National Institute of Standards and Technology. The author has contributed to research in topics: Atmospheric chemistry & Chemical reaction. The author has an hindex of 26, co-authored 28 publications receiving 20154 citations.

Papers
More filters
15 Aug 1992
TL;DR: As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided in this article, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.
Abstract: As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory.

3,218 citations

01 Aug 1992
TL;DR: As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided in this paper, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.
Abstract: As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory.

2,897 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated data on the kinetics and thermodynamic properties of species that are of importance in methanepyrolysis and combustion, including H, H2, O, O2, OH, HO2, CH2O, CH4, C2H6, HCHO, CO2, CO, HCO, CH3, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, CH16, CH17, CH
Abstract: This document contains evaluated data on the kinetics and thermodynamic properties of species that are of importance in methanepyrolysis and combustion. Specifically, the substances considered include H, H2, O, O2, OH, HO2, H2O2, H2O, CH4, C2H6, HCHO, CO2, CO, HCO, CH3, C2H5, C2H4, C2H3, C2H2, C2H, CH3CO, CH3O2, CH3O, singlet CH2, and triplet CH2. All possible reactions are considered. In arriving at recommended values, first preference is given to experimental measurements. Where data do not exist, a best possible estimate is given. In making extrapolations, extensive use is made RRKM calculations for the pressure dependence of unimolecular processes and the BEBO method for hydrogen transfer reactions. In the total absence of data, recourse is made to the principle of detailed balancing, thermokinetic estimates, or comparisons with analogous reactions. The temperature range covered is 300–2500 K and the density range 1×1016–1×1021 molecules/cm3. This data base forms a subset of the chemical kinetic data base for all combustion chemistry processes. Additions and revisions will be issued periodically.

1,803 citations

Journal ArticleDOI
TL;DR: A critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10-55 km altitude) was carried out by the authors under the auspices of the CODATA Task Group on Chemical Kinetics.
Abstract: This paper contains a critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10–55 km altitude). The work has been carried out by the authors under the auspices of the CODATA Task Group on Chemical Kinetics. Data sheets have been prepared for 148 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each reaction a preferred value of the rate coefficient at 298 K is given together with a temperature dependency where possible. The selection of the preferred value is discussed, and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an Appendix listing the available data on enthalpies of formation of the reactant and product species.

1,661 citations

Journal ArticleDOI
TL;DR: The IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry (IUPAC-GKDE) as mentioned in this paper has published a series of data sheets for organic halogen species.
Abstract: This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006/07. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appendices containing the data sheets, which provide information upon which the recommendations are made.

1,623 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and analytical techniques used to determine the chemical composition of SOA is presented.
Abstract: Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

3,324 citations

15 Aug 1992
TL;DR: As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided in this article, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.
Abstract: As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory.

3,218 citations

Journal ArticleDOI
TL;DR: In this article, the mechanisms and rate parameters for the gas-phase reactions of nitrogen compounds that are applicable to combustion-generated air pollution are discussed and illustrated by comparison of results from detailed kinetics calculations with experimental data.

2,843 citations

Journal ArticleDOI
TL;DR: The present status of knowledge of the gas phase reactions of inorganic Ox, Hox and NOx species and of selected classes of volatile organic compounds (VOCs) and their degradation products in the troposphere is discussed in this paper.

2,722 citations