scispace - formally typeset
Search or ask a question
Author

R. Frederick

Bio: R. Frederick is an academic researcher. The author has contributed to research in topics: Real Time Streaming Protocol & Session Description Protocol. The author has an hindex of 1, co-authored 1 publications receiving 7115 citations.

Papers
More filters
01 Jul 2003
TL;DR: RTP provides end-to-end network transport functions suitable for applications transmitting real-time data over multicast or unicast network services and is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks.
Abstract: This memorandum describes RTP, the real-time transport protocol. RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services. RTP does not address resource reservation and does not guarantee quality-of-service for real-time services. The data transport is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks, and to provide minimal control and identification functionality. RTP and RTCP are designed to be independent of the underlying transport and network layers. The protocol supports the use of RTP-level translators and mixers.

7,183 citations


Cited by
More filters
Book ChapterDOI
01 Jun 2002
TL;DR: Session Initiation Protocol (SIP) as discussed by the authors is an application layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants, such as Internet telephone calls, multimedia distribution, and multimedia conferences.
Abstract: This document describes Session Initiation Protocol (SIP), an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences.

5,482 citations

Journal ArticleDOI
TL;DR: An overview of the basic concepts for extending H.264/AVC towards SVC are provided and the basic tools for providing temporal, spatial, and quality scalability are described in detail and experimentally analyzed regarding their efficiency and complexity.
Abstract: With the introduction of the H.264/AVC video coding standard, significant improvements have recently been demonstrated in video compression capability. The Joint Video Team of the ITU-T VCEG and the ISO/IEC MPEG has now also standardized a Scalable Video Coding (SVC) extension of the H.264/AVC standard. SVC enables the transmission and decoding of partial bit streams to provide video services with lower temporal or spatial resolutions or reduced fidelity while retaining a reconstruction quality that is high relative to the rate of the partial bit streams. Hence, SVC provides functionalities such as graceful degradation in lossy transmission environments as well as bit rate, format, and power adaptation. These functionalities provide enhancements to transmission and storage applications. SVC has achieved significant improvements in coding efficiency with an increased degree of supported scalability relative to the scalable profiles of prior video coding standards. This paper provides an overview of the basic concepts for extending H.264/AVC towards SVC. Moreover, the basic tools for providing temporal, spatial, and quality scalability are described in detail and experimentally analyzed regarding their efficiency and complexity.

3,592 citations

Journal Article
TL;DR: In this article, the authors proposed a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks by identifying nodes that are equivalent from a routing perspective and turning off unnecessary nodes, keeping a constant level of routing fidelity.
Abstract: We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and turning off unnecessary nodes, keeping a constant level of routing fidelity. GAF moderates this policy using application- and system-level information; nodes that source or sink data remain on and intermediate nodes monitor and balance energy use. GAF is independent of the underlying ad hoc routing protocol; we simulate GAF over unmodified AODV and DSR. Analysis and simulation studies of GAF show that it can consume 40% to 60% less energy than an unmodified ad hoc routing protocol. Moreover, simulations of GAF suggest that network lifetime increases proportionally to node density; in one example, a four-fold increase in node density leads to network lifetime increase for 3 to 6 times (depending on the mobility pattern). More generally, GAF is an example of adaptive fidelity, a technique proposed for extending the lifetime of self-configuring systems by exploiting redundancy to conserve energy while maintaining application fidelity.

2,829 citations

Proceedings ArticleDOI
16 Jul 2001
TL;DR: A geographical adaptive fidelity algorithm that reduces energy consumption in ad hoc wireless networks by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity.
Abstract: We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity GAF moderates this policy using application- and system-level information; nodes that source or sink data remain on and intermediate nodes monitor and balance energy use GAF is independent of the underlying ad hoc routing protocol; we simulate GAF over unmodified AODV and DSR Analysis and simulation studies of GAF show that it can consume 40% to 60% less energy than an unmodified ad hoc routing protocol Moreover, simulations of GAP suggest that network lifetime increases proportionally to node density; in one example, a four-fold increase in node density leads to network lifetime increase for 3 to 6 times (depending on the mobility pattern) More generally, GAF is an example of adaptive fidelity, a technique proposed for extending the lifetime of self-configuring systems by exploiting redundancy to conserve energy while maintaining application fidelity

2,638 citations