scispace - formally typeset
Search or ask a question
Author

R. G. C. Antonise

Bio: R. G. C. Antonise is an academic researcher. The author has contributed to research in topics: Gene mapping & Amplified fragment length polymorphism. The author has an hindex of 2, co-authored 2 publications receiving 323 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This study demonstrates the relative ease of generating high-density linkage maps using the AFLP technology and identifies a number of epi-alleles, showing allelic variation in the CpNpG methylation only in the maize chromosomes.
Abstract: This study demonstrates the relative ease of generating high-density linkage maps using the AFLP® technology. Two high-density AFLP linkage maps of Zea mays L. were generated based on: (1) a B73 × Mo17 recombinant inbred population and (2) a D32 × D145 immortalized F2 population. Although AFLP technology is in essence a mono-allelic marker system, markers can be scored quantitatively and used to deduce zygosity. AFLP markers were generated using the enzyme combinations EcoRI/MseI and PstI/MseI. A total of 1539 and 1355 AFLP markers have been mapped in the two populations, respectively. Among the mapped PstI/MseIAFLP markers we have included fragments bounded by a methylated PstI site (mAFLP markers). Mapping these mAFLP markers shows that the presence of C-methylation segregates in perfect accordance with the primary target sequence, leading to Mendelian inheritance. Simultaneous mapping of PstI/MseIAFLP and PstI/MseI mAFLP markers allowed us to identify a number of epi-alleles, showing allelic variation in the CpNpG methylation only. However, their frequency in maize is low. Map comparison shows that, despite some rearrangements, most of the AFLP markers that are common in both populations, map at similar positions. This would indicate that AFLP markers are predominantly single-locus markers. Changes in map order occur mainly in marker-dense regions. These marker-dense regions, representing clusters of mainly EcoRI/MseI AFLP and PstI/MseI mAFLP markers, co- localize well with the putative centromeric regions of the maize chromosomes. In contrast, PstI/MseImarkers are more uniformly distributed over the genome.

259 citations

Journal ArticleDOI
TL;DR: The identification of an individual with a smaller and more distally located introgression fragment and homozygous ILs in its progeny validated the hypothesis that some factor present in the remaining A. roylei region was lethal when homozygously present in an onion genetic background.
Abstract: Downy mildew resistance originating from Allium roylei Stearn provides a complete resistance to onions and is based on one, dominant gene. Since A. roylei can successfully be hybridized with onion (A. cepa L.), a breeding scheme aimed at the introgression of this gene was initiated ca. 20 years ago. Several setbacks in this programme were encountered, firstly the identified molecular marker linked to the downy mildew resistance locus became increasingly difficult to use and finally lost its discriminating power and secondly the final step, making homozygous introgression lines (ILs), turned out to be more difficult then was hoped. GISH analysis showed that the chromosomal region harbouring the resistance locus was the only remaining piece of A. roylei in the nuclear background of onion and it also confirmed that this region was located on the distal end of chromosome 3. It was hypothesized that some factor present in the remaining A. roylei region was lethal when homozygously present in an onion genetic background. The identification of an individual with a smaller and more distally located introgression fragment and homozygous ILs in its progeny validated this hypothesis. With the help of these nearly isogenic lines four AFLP® markers closely linked to the resistance gene were identified, which can be used for marker-aided selection. The introduction of downy mildew resistance caused by Peronospora destructor into onion is a significant step forward in the development of environmentally-friendly onion cultivars.

73 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that DArT performs similarly well for the hexaploid genome of bread wheat as it did for barley, and the genetic relationships among bread wheat cultivars revealed by D ArT coincided with knowledge generated with other methods, and even closely related cultivars could be distinguished.
Abstract: Despite a substantial investment in the development of panels of single nucleotide polymorphism (SNP) markers, the simple sequence repeat (SSR) technology with a limited multiplexing capability remains a standard, even for applications requiring whole-genome information. Diversity arrays technology (DArT) types hundreds to thousands of genomic loci in parallel, as previously demonstrated in a number diploid plant species. Here we show that DArT performs similarly well for the hexaploid genome of bread wheat (Triticum aestivum L.). The methodology previously used to generate DArT fingerprints of barley also generated a large number of high-quality markers in wheat (99.8% allele-calling concordance and approximately 95% call rate). The genetic relationships among bread wheat cultivars revealed by DArT coincided with knowledge generated with other methods, and even closely related cultivars could be distinguished. To verify the Mendelian behaviour of DArT markers, we typed a set of 90 Cranbrook x Halberd doubled haploid lines for which a framework (FW) map comprising a total of 339 SSR, restriction fragment length polymorphism (RFLP) and amplified fragment length polymorphism (AFLP) markers was available. We added an equal number of DArT markers to this data set and also incorporated 71 sequence tagged microsatellite (STM) markers. A comparison of logarithm of the odds (LOD) scores, call rates and the degree of genome coverage indicated that the quality and information content of the DArT data set was comparable to that of the combined SSR/RFLP/AFLP data set of the FW map.

610 citations

Journal ArticleDOI
TL;DR: Diversity Arrays Technology can be effectively applied to genetic mapping and diversity analyses of barley and is highlighted as a generic technique for genome profiling in the context of molecular breeding and genomics.
Abstract: Diversity Arrays Technology (DArT) can detect and type DNA variation at several hundred genomic loci in parallel without relying on sequence information. Here we show that it can be effectively applied to genetic mapping and diversity analyses of barley, a species with a 5,000-Mbp genome. We tested several complexity reduction methods and selected two that generated the most polymorphic genomic representations. Arrays containing individual fragments from these representations generated DArT fingerprints with a genotype call rate of 98.0% and a scoring reproducibility of at least 99.8%. The fingerprints grouped barley lines according to known genetic relationships. To validate the Mendelian behavior of DArT markers, we constructed a genetic map for a cross between cultivars Steptoe and Morex. Nearly all polymorphic array features could be incorporated into one of seven linkage groups (98.8%). The resulting map comprised ≈385 unique DArT markers and spanned 1,137 centimorgans. A comparison with the restriction fragment length polymorphism-based framework map indicated that the quality of the DArT map was equivalent, if not superior, to that of the framework map. These results highlight the potential of DArT as a generic technique for genome profiling in the context of molecular breeding and genomics.

593 citations

Journal ArticleDOI
TL;DR: Agricultural biodiversity has been valued almost exclusively as a source of traits that can be used in scientific breeding programs to improve the productivity of crop varieties and livestock breeds, but as discussed by the authors argues that it can make a far greater contribution to increased productivity.
Abstract: Agricultural biodiversity has hitherto been valued almost exclusively as a source of traits that can be used in scientific breeding programs to improve the productivity of crop varieties and livestock breeds. We argue that it can make a far greater contribution to increased productivity. In particular, a wider deployment of agricultural biodiversity is an essential component in the sustainable delivery of a more secure food supply. Diversity of kingdoms, species and genepools can increase the productivity of farming systems in a range of growing conditions, and more diverse farming systems are also generally more resilient in the face of perturbations, thus enhancing food security. Diversity can maintain and increase soil fertility and mitigate the impact of pests and diseases. Diversity of diet, founded on diverse farming systems, delivers better nutrition and greater health, with additional benefits for human productivity and livelihoods. Agricultural biodiversity will also be absolutely essential to cope with the predicted impacts of climate change, not simply as a source of traits but as the underpinnings of more resilient farm ecosystems. Many of the benefits of agricultural biodiversity are manifested at different ecological and human scales, and cut across political divisions, requiring a cross-sectoral approach to reassess the role of agricultural biodiversity in sustainable and secure food production.

413 citations

Journal ArticleDOI
TL;DR: This barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes and highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations.
Abstract: Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers. The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 ± 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 ± 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits. Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations.

387 citations

Journal ArticleDOI
TL;DR: Although QTL analysis is still time-consuming and resource-demanding, its integration with genomics and post-genomics approaches (e.g. transcriptome, proteome and metabolome analyses) will play an increasingly important role for the identification and validation of candidate genes affecting MPTs and GY.

377 citations