scispace - formally typeset
Search or ask a question
Author

R. Hancox

Bio: R. Hancox is an academic researcher from European Atomic Energy Community. The author has contributed to research in topics: Tokamak & Tokamak Fusion Test Reactor. The author has an hindex of 2, co-authored 2 publications receiving 3653 citations.

Papers
More filters
Journal Article
A. Gibson, Tadashi Sekiguchi, K. Lackner1, S. Bodner, R. Hancox 
TL;DR: In this paper, the first experiments in JET have been described, which show that this large tokamak behaves in a similar manner to smaller tokak, but with correspondingly improved plasma parameters.
Abstract: FIRST EXPERIMENTS IN JET. Results obtained from JET since June 1983 are described which show that this large tokamak behaves in a similar manner to smaller tokamaks, but with correspondingly improved plasma parameters. Long-duration hydrogen and deuterium plasmas (>10 s) have been obtained with electron temperatures reaching > 4 keV for power dissipations < 3 MW and with * Euratom-IPP Association, Institut fur Plasmaphysik, Garching, Federal Republic of Germany. ** Euratom-ENEA Association, Centro di Frascati, Italy. *** Euratom-UKAEA Association, Culham Laboratory, Abingdon, Oxfordshire, United Kingdom. **** University of Dusseldorf, Dusseldorf, Federal Republic of Germany. + Euratom-Ris0 Association, Ris National Laboratory, Roskilde, Denmark. ++ Euratom-CNR Association, Istituto di Física del Plasma, Milan, Italy. +++ Imperial College of Science and Technology, University of London, London, United Kingdom. ++++ Euratom-FOM Association, FOM Instituut voor Plasmafysica,. Nieuwegein, Netherlands. ® Euratom-Suisse Association, Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland.

3,647 citations

Journal ArticleDOI
TL;DR: A number of new devices have been brought into full operation, ranging from JT-60 (an advanced large tokamak from Japan -a country with a well established and mature fusion programme) to HL-1 (a medium sized tokak from China-a country whose fusion programme has recently embarked on a considerable expansion) as discussed by the authors.
Abstract: There have been many important advances in tokamak research since the 1984 Conference. A number of new devices have been brought into full operation, ranging from JT-60 (an advanced large tokamak from Japan – a country with a well established and mature fusion programme) to HL-1 (a medium sized tokamak from China – a country whose fusion programme has recently embarked on a considerable expansion). Our Chinese colleagues are to be congratulated on having achieved full Ohmic tokamak operation with all the usual features and on providing a useful plasma for future research.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an approach to fusion that relies on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion is presented.
Abstract: Inertial confinement fusion (ICF) is an approach to fusion that relies on the inertia of the fuel mass to provide confinement. To achieve conditions under which inertial confinement is sufficient for efficient thermonuclear burn, a capsule (generally a spherical shell) containing thermonuclear fuel is compressed in an implosion process to conditions of high density and temperature. ICF capsules rely on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion. In direct drive, the laser beams (or charged particle beams) are aimed directly at a target. The laser energy is transferred to electrons by means of inverse bremsstrahlung or a variety of plasma collective processes. In indirect drive, the driver energy (from laser beams or ion beams) is first absorbed in a high‐Z enclosure (a hohlraum), which surrounds the capsule. The material heated by the driver emits x rays, which drive the capsule implosion. For optimally designed targets, 70%–80% of the d...

2,121 citations

Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations

Journal ArticleDOI
TL;DR: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest priority prerequisite for proceeding with construction of an ignition-scale laser facility as mentioned in this paper.
Abstract: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlrau...

1,601 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of radially sheared poloidal flows on ambient edge turbulence in tokamaks is investigated analytically, and a hybrid time scale weighted toward the former and the latter is found to govern the decorrelation process.
Abstract: The impact of radially sheared poloidal flows on ambient edge turbulence in tokamaks is investigated analytically. In the regime where poloidal shearing exceeds turbulent radial scattering, a hybrid time scale weighted toward the former is found to govern the decorrelation process. The coupling between radial and poloidal decorrelation results in a suppression of the turbulence below its ambient value. The turbulence quench mechanism is found to be insensitive to the sign of either the radial electric field or its shear.

1,358 citations

Journal ArticleDOI
TL;DR: The ExB shear stabilization model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition as mentioned in this paper.
Abstract: One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization.

1,251 citations