scispace - formally typeset
Search or ask a question
Author

R. Hasumi

Bio: R. Hasumi is an academic researcher from Toshiba. The author has contributed to research in topics: Schottky diode & Process window. The author has an hindex of 2, co-authored 2 publications receiving 116 citations.

Papers
More filters
Proceedings ArticleDOI
A. Kinoshita1, Takashi Kinoshita1, Yoshio Nishi1, Ken Uchida1, S. Toriyama1, R. Hasumi1, Junji Koga1 
01 Dec 2006
TL;DR: In this paper, the carrier transport in dopant-segregated Schottky (DSS) and conventional MOSFETs was thoroughly investigated in terms of carrier injection velocity, vinj.
Abstract: The carrier transport in dopant-segregated Schottky (DSS) and conventional MOSFETs was thoroughly investigated in terms of carrier injection velocity, vinj. It was found that vinj enhancement associated with the velocity overshoot enhances the current drivability in DSS, in addition to the reduction of parasitic resistance. A physical-based model was newly developed to explain the velocity overshoot behavior and reproduced the experimental data very well. Moreover, a novel type of DSS FinFET to take full advantage of the velocity overshoot was proposed and demonstrated as a primary study.

68 citations

Proceedings ArticleDOI
01 Dec 2008
TL;DR: In this article, the authors describe SRAM scaling for 32 nm low power bulk technology, enabled by high-K metal gate process, down to 0.149 mum2 and 0.124 mum2.
Abstract: This paper describes SRAM scaling for 32 nm low power bulk technology, enabled by high-K metal gate process, down to 0.149 mum2 and 0.124 mum2. SRAM access stability and write margin are significantly improved through a 50% Vt mismatch reduction, thanks to HK-MG Tinv scaling. Cell read current is increased by 70% over Poly-SiON process. Ultra dense cell process window is expanded with optimized contact process. A dual-ground write assist option can additionally enable ultra dense 0.124 mum2 cell to meet low power application requirements.

49 citations


Cited by
More filters
Patent
19 Aug 2010
TL;DR: In this article, a system includes a semiconductor device consisting of a first single crystal silicon layer comprising first transistors, first alignment marks, and at least one metal layer overlying the first single-crystalline silicon layer.
Abstract: A system includes a semiconductor device. The semiconductor device includes a first single crystal silicon layer comprising first transistors, first alignment marks, and at least one metal layer overlying the first single crystal silicon layer, wherein the at least one metal layer comprises copper or aluminum more than other materials; and a second single crystal silicon layer overlying the at least one metal layer. The second single crystal silicon layer comprises a plurality of second transistors arranged in substantially parallel bands. Each of a plurality of the bands comprises a portion of the second transistors along an axis in a repeating pattern.

417 citations

Patent
28 Jun 2011
TL;DR: In this paper, a first layer and a second layer of layer-transferred mono-crystallized silicon, where the first layer comprises a first plurality of horizontally-oriented transistors, and the second layer includes a second plurality of vertically oriented transistors.
Abstract: A device comprising semiconductor memories, the device comprising: a first layer and a second layer of layer-transferred mono-crystallized silicon, wherein the first layer comprises a first plurality of horizontally-oriented transistors; wherein the second layer comprises a second plurality of horizontally-oriented transistors; and wherein the second plurality of horizontally-oriented transistors overlays the first plurality of horizontally-oriented transistors.

413 citations

Patent
28 Mar 2011
TL;DR: In this article, a method to process an Integrated Circuit device including processing a first layer of first transistors, then processing a metal layer overlaying the first layer and providing at least one connection to the first Transistors, and finally processing a second layer of second transistors overlaying a first metal layer, wherein the second metal layer is connected to provide power to at least 1 of the second Transistors.
Abstract: A method to process an Integrated Circuit device including processing a first layer of first transistors, then processing a first metal layer overlaying the first transistors and providing at least one connection to the first transistors, then processing a second metal layer overlaying the first metal layer, then processing a second layer of second transistors overlaying the second metal layer, wherein the second metal layer is connected to provide power to at least one of the second transistors.

351 citations

Journal ArticleDOI
TL;DR: The importance of process variation in modern transistor technology is discussed, front-end variation sources are reviewed, device and circuit variation measurement techniques are presented, and recent intrinsic transistor variation performance from the literature is compared.
Abstract: Moore's law technology scaling has improved performance by five orders of magnitude in the last four decades. As advanced technologies continue the pursuit of Moore's law, a variety of challenges will need to be overcome. One of these challenges is the management of process variation. This paper discusses the importance of process variation in modern transistor technology, reviews front-end variation sources, presents device and circuit variation measurement techniques, including circuit and memory data from the 32-nm node, and compares recent intrinsic transistor variation performance from the literature.

350 citations

Patent
27 Mar 2017
TL;DR: In this article, an Integrated Circuit device including a first layer including first single crystal transistors; a second layer overlaying the first layer, the second layer including second single-crystal transistors, where the second-layer thickness is less than one micron, where a plurality of the first transistors is circumscribed by a first dice lane of at least 10 microns width, and there are no first conductive connections to the plurality of transistors that cross the first-dice lane.
Abstract: An Integrated Circuit device, including: a first layer including first single crystal transistors; a second layer overlaying the first layer, the second layer including second single crystal transistors, where the second layer thickness is less than one micron, where a plurality of the first transistors is circumscribed by a first dice lane of at least 10 microns width, and there are no first conductive connections to the plurality of the first transistors that cross the first dice lane, where a plurality of the second transistors are circumscribed by a second dice lane of at least 10 microns width, and there are no second conductive connections to the plurality of the second transistors that cross the second dice lane, and at least one thermal conducting path from at least one of the second single crystal transistors to an external surface of the device.

185 citations