scispace - formally typeset
Search or ask a question
Author

R. Herberholz

Bio: R. Herberholz is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Band gap & Heterojunction. The author has an hindex of 10, co-authored 11 publications receiving 1643 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a method to deduce energy distributions of defects in the band gap of a semiconductor by measuring the complex admittance of a junction is proposed, which consists of calculating the derivative of the junction capacitance with respect to the angular frequency of the signal corrected by a factor taking into account the band bending and the drop of the ac signal.
Abstract: A method to deduce energy distributions of defects in the band gap of a semiconductor by measuring the complex admittance of a junction is proposed. It consists of calculating the derivative of the junction capacitance with respect to the angular frequency of the ac signal corrected by a factor taking into account the band bending and the drop of the ac signal over the space charge region of the junction. Numerical modeling demonstrates that defect distributions in energy can be reconstructed by this method with high accuracy. Defect distributions of polycrystalline Cu(In,Ga)Se2 thin films are determined by this method from temperature dependent admittance measurements on heterojunctions of Cu(In,Ga)Se2 with ZnO that are used as efficient thin film solar cells.

688 citations

Journal ArticleDOI
TL;DR: In this article, a detailed study of admittance spectra and deep level transient spectroscopy on CuInSe2/CdS/ZnO thin film solar cells is presented.
Abstract: We present a detailed study of admittance spectroscopy and deep level transient spectroscopy on CuInSe2/CdS/ZnO thin film solar cells. The admittance spectra reveal an emission from a distribution of hole traps centered at an activation energy of 280 meV and a shallower level with a sharp activation energy of ∼ 120 meV. After repetitive annealing of the device in air at 200 °C, the activation energy of the latter level increases continuously from 120 to 240 meV, while the 280 meV hole traps remain unaffected. Deep level transient spectroscopy with optical excitation reveals an emission of minority carriers with time constants comparable to those observed for the shallow level in admittance spectroscopy. The shift of the activation energy after annealing also occurs in deep level transient spectroscopy and ascertains that the emissions observed in both techniques have the same origin. The magnitude and continuous shift of the activation energy of the minority carrier emission indicates a distribution of le...

261 citations

Journal ArticleDOI
TL;DR: In this article, an illumination-dependent voltage drop across a defect layer with a thickness of 15 nm is assumed to explain the cross-over between dark and illuminated current-voltage characteristics.
Abstract: Temperature-dependent measurements of the current–voltage characteristics and of the junction admittance of ZnO/CdS/Cu(In,Ga)Se2 heterojunction solar cells are presented, together with numerical modelling of these experimental results. We explain the cross-over between dark and illuminated current–voltage characteristics currently observed for this type of device by the impact of the defect chalcopyrite layer at the surface of the Cu(In,Ga)Se2 absorber. Our model assumes an illumination-dependent voltage drop across a defect layer with a thickness of 15 nm to explain the cross-over. The voltage drop results from the electrical dipole made up of donor-like states at the interface between the defect layer and CdS and deep acceptor states in the defect layer itself. The illumination dependence of this voltage drop is explained by photogenerated holes trapped by the deep acceptor states in the defect layer. Numerical simulations have been carried out using the program SCAPS-1D in order to verify our model assumptions. From our model, indirect conclusions are derived concerning the maximum conduction band offsets between CdS and the defect layer and between CdS and ZnO. Copyright © 1998 John Wiley & Sons, Ltd.

199 citations

Journal ArticleDOI
TL;DR: In this article, the post-deposition air-annealing effects of Cu(In,Ga)Se2 based thin films and heterojunction solar cell devices are studied by photoelectron spectroscopy.
Abstract: Post-deposition air-annealing effects of Cu(In,Ga)Se2 based thin films and heterojunction solar cell devices are studied by photoelectron spectroscopy and admittance spectroscopy. Ultraviolet photoelectron spectroscopy reveals type inversion at the surface of the as-prepared films, which is eliminated after exposure of several minutes to air due to the passivation of surface Se deficiencies. X-ray photoelectron spectroscopy demonstrates that air annealing at 200 °C leads to a decreased Cu concentration at the film surface. Admittance spectroscopy of complete ZnO/CdS/Cu(In,Ga)Se2 heterojunction solar cells shows that the Cu(In,Ga)Se2 surface type inversion is restored by the chemical bath used for CdS deposition. Air annealing of the finished devices at 200 °C reduces the type inversion again due to defect passivation. Our results also show that oxygenation leads to a charge redistribution and to a significant compensation of the effective acceptor density in the bulk of the absorber. This is consistent wi...

176 citations

Journal ArticleDOI
R. Herberholz1, V. Nadenau1, U. Ruhle1, Ch. Köble1, H.W. Schock1, B. Dimmler 
TL;DR: In this article, a consistent picture of the problems encountered in the case of wide-gap absorbers is drawn on the basis of results from photoelectron spectroscopy in conjunction with electrical measurements on the devices.

145 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The trap states on the surface and grain boundaries of the perovskite materials are demonstrated to be the origin of photocurrent hysteresis and that the fullerene layers deposited onperovskites can effectively passivate these charge trap states and eliminate the notorious photocurrent Hysteresi.
Abstract: The large photocurrent hysteresis observed in many organometal trihalide perovskite solar cells has become a major hindrance impairing the ultimate performance and stability of these devices, while its origin was unknown. Here we demonstrate the trap states on the surface and grain boundaries of the perovskite materials to be the origin of photocurrent hysteresis and that the fullerene layers deposited on perovskites can effectively passivate these charge trap states and eliminate the notorious photocurrent hysteresis. Fullerenes deposited on the top of the perovskites reduce the trap density by two orders of magnitude and double the power conversion efficiency of CH(3)NH(3)PbI(3) solar cells. The elucidation of the origin of photocurrent hysteresis and its elimination by trap passivation in perovskite solar cells provides important directions for future enhancements to device efficiency.

2,440 citations

Journal ArticleDOI
TL;DR: Zheng et al. as discussed by the authors showed that quaternary ammonium halides can effectively passivate ionic defects in several different types of hybrid perovskite with their negative-and positive-charged components.
Abstract: The ionic defects at the surfaces and grain boundaries of organic–inorganic halide perovskite films are detrimental to both the efficiency and stability of perovskite solar cells. Here, we show that quaternary ammonium halides can effectively passivate ionic defects in several different types of hybrid perovskite with their negative- and positive-charged components. The efficient defect passivation reduces the charge trap density and elongates the carrier recombination lifetime, which is supported by density-function-theory calculation. The defect passivation reduces the open-circuit-voltage deficit of the p–i–n-structured device to 0.39 V, and boosts the efficiency to a certified value of 20.59 ± 0.45%. Moreover, the defect healing also significantly enhances the stability of films in ambient conditions. Our findings provide an avenue for defect passivation to further improve both the efficiency and stability of solar cells. Losses in solar cells can be caused by material defects in the bulk or at interfaces. Here, Zheng et al. use quaternary ammonium halides to passivate various perovskite absorbers and prepare solar cells with certified efficiency above 20%, suggesting that both anionic and cation defects are affected.

1,536 citations

Journal ArticleDOI
TL;DR: Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials.
Abstract: Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials. The carrier diffusion length of MAPbI3 is increased to over 1 μm. The efficiency remains above 14.5% when the MAPbI3 thickness changes from 250 nm to 1 μm, with the highest efficiency reaching 15.6%.

1,521 citations

Journal ArticleDOI
TL;DR: In this paper, an overview is given of various electronic effects present in polycrystalline thin film solar cells, which do not occur in standard crystalline Si solar cells and how these effects are treated numerically in a numerical solar cell simulation tool, SCAPS.

1,519 citations

Journal ArticleDOI
TL;DR: The density of midgap trap states in CQD solids is quantified and shown to be limited by electron-hole recombination due to these states, and a robust hybrid passivation scheme is developed that can passivate trap sites that are inaccessible to much larger organic ligands.
Abstract: Improved performance in a photovoltaic device made of colloidal quantum dots is achieved through a combination of passivation by halide anions and organic crosslinking.

1,183 citations