scispace - formally typeset
Search or ask a question
Author

R. Hoogerwerf

Bio: R. Hoogerwerf is an academic researcher from Harvard University. The author has contributed to research in topics: Stars & Pulsar. The author has an hindex of 6, co-authored 10 publications receiving 1847 citations.
Topics: Stars, Pulsar, Supernova, Open cluster, T Tauri star

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive survey of the stellar content of the OB associations within 1 kpc from the Sun is presented, based on Hipparcos positions, proper motions, and parallaxes.
Abstract: A comprehensive census of the stellar content of the OB associations within 1 kpc from the Sun is presented, based on Hipparcos positions, proper motions, and parallaxes. It is a key part of a long-term project to study the formation, structure, and evolution of nearby young stellar groups and related star-forming regions. OB associations are unbound moving groups, which can be detected kinematically because of their small internal velocity dispersion. The nearby associations have a large extent on the sky, which traditionally has limited astrometric membership determination to bright stars (V 6 mag), with spectral types earlier than ~B5. The Hipparcos measurements allow a major improvement in this situation. Moving groups are identified in the Hipparcos Catalog by combining de Bruijne's refurbished convergent point method with the Spaghetti method of Hoogerwerf & Aguilar. Astrometric members are listed for 12 young stellar groups, out to a distance of ~650 pc. These are the three subgroups Upper Scorpius, Upper Centaurus Lupus, and Lower Centaurus Crux of Sco OB2, as well as Vel OB2, Tr 10, Col 121, Per OB2, α Persei (Per OB3), Cas–Tau, Lac OB1, Cep OB2, and a new group in Cepheus, designated as Cep OB6. The selection procedure corrects the list of previously known astrometric and photometric B- and A-type members in these groups and identifies many new members, including a significant number of F stars, as well as evolved stars, e.g., the Wolf-Rayet stars γ2 Vel (WR 11) in Vel OB2 and EZ CMa (WR 6) in Col 121, and the classical Cepheid δ Cep in Cep OB6. Membership probabilities are given for all selected stars. Monte Carlo simulations are used to estimate the expected number of interloper field stars. In the nearest associations, notably in Sco OB2, the later-type members include T Tauri objects and other stars in the final pre–main-sequence phase. This provides a firm link between the classical high-mass stellar content and ongoing low-mass star formation. Detailed studies of these 12 groups, and their relation to the surrounding interstellar medium, will be presented elsewhere. Astrometric evidence for moving groups in the fields of R CrA, CMa OB1, Mon OB1, Ori OB1, Cam OB1, Cep OB3, Cep OB4, Cyg OB4, Cyg OB7, and Sct OB2, is inconclusive. OB associations do exist in many of these regions, but they are either at distances beyond ~500 pc where the Hipparcos parallaxes are of limited use, or they have unfavorable kinematics, so that the group proper motion does not distinguish it from the field stars in the Galactic disk. The mean distances of the well-established groups are systematically smaller than the pre-Hipparcos photometric estimates. While part of this may be caused by the improved membership lists, a recalibration of the upper main sequence in the Hertzsprung-Russell diagram may be called for. The mean motions display a systematic pattern, which is discussed in relation to the Gould Belt. Six of the 12 detected moving groups do not appear in the classical list of nearby OB associations. This is sometimes caused by the absence of O stars, but in other cases a previously known open cluster turns out to be (part of) an extended OB association. The number of unbound young stellar groups in the solar neighborhood may be significantly larger than thought previously.

1,354 citations

Journal ArticleDOI
TL;DR: In this article, the authors used milli-arcsecond accuracy astrometry (proper motions and parallaxes) from Hipparcos and from radio observations to retrace the orbits of 56 runaway stars and nine compact objects with distances less than 700 pc, to identify the parent stellar group.
Abstract: We use milli-arcsecond accuracy astrometry (proper motions and parallaxes) from Hipparcos and from radio observations to retrace the orbits of 56 runaway stars and nine compact objects with distances less than 700 pc, to identify the parent stellar group. It is possible to deduce the specific formation scenario with near certainty for two cases. (i) We find that the runaway star ζ Ophiuchi and the pulsar PSR J1932+1059 originated about 1 Myr ago in a supernova explosion in a binary in the Upper Scorpius subgroup of the Sco OB2 association. The pulsar received a kick velocity of ∼ 350 km s-1 in this event, which dissociated the binary, and gave ζ Oph its large space velocity. (ii) Blaauw & Morgan and Gies & Bolton already postulated a common origin for the runaway-pair AE Aur and μ Col, possibly involving the massive highly-eccentric binary ι Ori, based on their equal and opposite velocities. We demonstrate that these three objects indeed occupied a very small volume ∼ 2.5 Myr ago, and show that they were ejected from the nascent Trapezium cluster. We identify the parent group for two more pulsars: both likely originate in the ∼ 50 Myr old association Per OB3, which contains the open cluster α Persei. At least 21 of the 56 runaway stars in our sample can be linked to the nearby associations and young open clusters. These include the classical runaways 53 Arietis (Ori OB1), ξ Persei (Per OB2), and λ Cephei (Cep OB3), and fifteen new identifications, amongst which a pair of stars running away in opposite directions from the region containing the λ Ori cluster. Other currently nearby runaways and pulsars originated beyond 700 pc, where our knowledge of the parent groups is very incomplete.

363 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the path of the runaway star ζ Ophiuchi intersected that of the nearby pulsar PSR J1932+1059, ~1 Myr ago, in the young stellar group Upper Scorpius.
Abstract: Milliarcsecond astrometry provided by Hipparcos and by radio observations makes it possible to retrace the orbits of some of the nearest runaway stars and pulsars to determine their site of origin. The orbits of the runaways AE Aurigae and μ Columbae and of the eccentric binary ι Orionis intersected each other ~2.5 Myr ago in the nascent Trapezium cluster, confirming that these runaways were formed in a binary-binary encounter. The path of the runaway star ζ Ophiuchi intersected that of the nearby pulsar PSR J1932+1059, ~1 Myr ago, in the young stellar group Upper Scorpius. We propose that this neutron star is the remnant of a supernova that occurred in a binary system that also contained ζ Oph and deduce that the pulsar received a kick velocity of ~350 km s-1 in the explosion. These two cases provide the first specific kinematic evidence that both mechanisms proposed for the production of runaway stars, the dynamical ejection scenario and the binary-supernova scenario, operate in nature.

164 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive census of the stellar content of the nearby OB associations is presented, based on Hipparcos positions, proper motions, and parallaxes, and Monte Carlo simulations are used to estimate the expected number of interloper field stars.
Abstract: A comprehensive census of the stellar content of the nearby OB associations is presented, based on Hipparcos positions, proper motions, and parallaxes. Moving groups are identified by combining de Bruijne's refurbished convergent point method with the `Spaghetti method' of Hoogerwerf & Aguilar. Monte Carlo simulations are used to estimate the expected number of interloper field stars. Astrometric members are listed for 12 young stellar groups, out to a distance of ~650 pc. These are the 3 subgroups Upper Scorpius, Upper Centaurus Lupus and Lower Centaurus Crux of Sco OB2, as well as Vel OB2, Tr 10, Col 121, Per OB2, alpha Persei (Per OB3), Cas-Tau, Lac OB1, Cep OB2, and a new group designated as Cep OB6. The selection procedure corrects the list of previously known astrometric and photometric B- and A-type members, and identifies many new members, including a significant number of F stars, as well as evolved stars, e.g., the Wolf-Rayet stars gamma^2 Vel (Vel OB2) and EZ CMa (Col 121), and the classical Cepheid delta Cep in Cep OB6. In the nearest associations the later-type members include T Tauri objects and other pre-main sequence stars. Astrometric evidence for moving groups in the fields of R CrA, CMa OB1, Mon OB1, Ori OB1, Cam OB1, Cep OB3, Cep OB4, Cyg OB4, Cyg OB7, and Sct OB2, is inconclusive, due to their large distance or unfavorable kinematics. The mean distances of the well-established groups are systematically smaller than previous estimates. The mean motions display a systematic pattern, which is discussed in relation to the Gould Belt. Six of the 12 detected moving groups do not appear in the classical list of nearby OB associations. The number of unbound young stellar groups in the Solar neighbourhood may be significantly larger than thought previously.

58 citations

Journal ArticleDOI
TL;DR: In this article, radial velocities for 29 B and A-type stars in the field of the nearby association Perseus OB2 were derived from spectra obtained with AURELIE, via cross correlation with radial velocity standards matched as closely as possible in spectral type.
Abstract: We present radial velocities for 29 B- and A-type stars in the field of the nearby association Perseus OB2. The velocities are derived from spectra obtained with AURELIE, via cross correlation with radial velocity standards matched as closely as possible in spectral type. The resulting accuracy is2-3 km s 1 . We use these measurements, together with published values for a few other early-type stars, to study membership of the association. The mean radial velocity (and measured velocity dispersion) of Per OB2 is 23:5 3: 9k m s 1 , and lies15 km s 1 away from the mean velocity of the local disk field stars. We identify a number of interlopers in the list of possible late-B- and A-type members which was based on Hipparcos parallaxes and proper motions, and discuss the colour-magnitude diagram of the association.

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The final version published in MNRAS August 2007 included significant revisions including significant revisions to the original version April 2006.
Abstract: Final published version including significant revisions. Twenty four pages, fourteen figures. Original version April 2006; final version published in MNRAS August 2007

2,562 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive survey of the stellar content of the OB associations within 1 kpc from the Sun is presented, based on Hipparcos positions, proper motions, and parallaxes.
Abstract: A comprehensive census of the stellar content of the OB associations within 1 kpc from the Sun is presented, based on Hipparcos positions, proper motions, and parallaxes. It is a key part of a long-term project to study the formation, structure, and evolution of nearby young stellar groups and related star-forming regions. OB associations are unbound moving groups, which can be detected kinematically because of their small internal velocity dispersion. The nearby associations have a large extent on the sky, which traditionally has limited astrometric membership determination to bright stars (V 6 mag), with spectral types earlier than ~B5. The Hipparcos measurements allow a major improvement in this situation. Moving groups are identified in the Hipparcos Catalog by combining de Bruijne's refurbished convergent point method with the Spaghetti method of Hoogerwerf & Aguilar. Astrometric members are listed for 12 young stellar groups, out to a distance of ~650 pc. These are the three subgroups Upper Scorpius, Upper Centaurus Lupus, and Lower Centaurus Crux of Sco OB2, as well as Vel OB2, Tr 10, Col 121, Per OB2, α Persei (Per OB3), Cas–Tau, Lac OB1, Cep OB2, and a new group in Cepheus, designated as Cep OB6. The selection procedure corrects the list of previously known astrometric and photometric B- and A-type members in these groups and identifies many new members, including a significant number of F stars, as well as evolved stars, e.g., the Wolf-Rayet stars γ2 Vel (WR 11) in Vel OB2 and EZ CMa (WR 6) in Col 121, and the classical Cepheid δ Cep in Cep OB6. Membership probabilities are given for all selected stars. Monte Carlo simulations are used to estimate the expected number of interloper field stars. In the nearest associations, notably in Sco OB2, the later-type members include T Tauri objects and other stars in the final pre–main-sequence phase. This provides a firm link between the classical high-mass stellar content and ongoing low-mass star formation. Detailed studies of these 12 groups, and their relation to the surrounding interstellar medium, will be presented elsewhere. Astrometric evidence for moving groups in the fields of R CrA, CMa OB1, Mon OB1, Ori OB1, Cam OB1, Cep OB3, Cep OB4, Cyg OB4, Cyg OB7, and Sct OB2, is inconclusive. OB associations do exist in many of these regions, but they are either at distances beyond ~500 pc where the Hipparcos parallaxes are of limited use, or they have unfavorable kinematics, so that the group proper motion does not distinguish it from the field stars in the Galactic disk. The mean distances of the well-established groups are systematically smaller than the pre-Hipparcos photometric estimates. While part of this may be caused by the improved membership lists, a recalibration of the upper main sequence in the Hertzsprung-Russell diagram may be called for. The mean motions display a systematic pattern, which is discussed in relation to the Gould Belt. Six of the 12 detected moving groups do not appear in the classical list of nearby OB associations. This is sometimes caused by the absence of O stars, but in other cases a previously known open cluster turns out to be (part of) an extended OB association. The number of unbound young stellar groups in the solar neighborhood may be significantly larger than thought previously.

1,354 citations

Journal ArticleDOI
TL;DR: In this article, a basic description of the collapse of a massive molecular core and a critical discussion of the three competing concepts of massive star formation are presented, including monolithic collapse in isolated cores, competitive accretion in a protocluster environment, stellar collisions and mergers in very dense systems.
Abstract: Although fundamental for astrophysics, the processes that produce massive stars are not well understood. Large distances, high extinction, and short timescales of critical evolutionary phases make observations of these processes challenging. Lacking good observational guidance, theoretical models have remained controversial. This review offers a basic description of the collapse of a massive molecular core and a critical discussion of the three competing concepts of massive star formation: ▪ monolithic collapse in isolated cores ▪ competitive accretion in a protocluster environment ▪ stellar collisions and mergers in very dense systems We also review the observed outflows, multiplicity, and clustering properties of massive stars, the upper initial mass function and the upper mass limit. We conclude that high-mass star formation is not merely a scaled-up version of low-mass star formation with higher accretion rates, but partly a mechanism of its own, primarily owing to the role of stellar mass ...

1,332 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived an improved activity-age calibration for F7-K2 dwarfs (0:5 mag < B -V < 0.9 mag).
Abstract: While the strong anticorrelation between chromospheric activity and age has led to the common use of the Ca II H and K emission index (R'_(HK) = L_(HK)/L_(bol)) as an empirical age estimator for solar-type dwarfs, existing activity-age relations produce implausible ages at both high and low activity levels.We have compiled R'_(HK) HK data from the literature for young stellar clusters, richly populating for the first time the young end of the activity-age relation. Combining the cluster activity data with modern cluster age estimates and analyzing the color dependence of the chromospheric activity age index,we derive an improved activity-age calibration for F7-K2 dwarfs (0:5 mag < B - V < 0.9 mag). We also present a more fundamentally motivated activity-age calibration that relies on conversion of R'_(HK) values through the Rossby number to rotation periods and then makes use of improved gyrochronology relations. We demonstrate that our new activity-age calibration has typical age precision of ~0.2 dex for normal solar-type dwarfs aged between the Hyades and the Sun (~0.6-4.5 Gyr). Inferring ages through activity-rotation-age relations accounts for some color-dependent effects and systematically improves the age estimates (albeit only slightly). We demonstrate that coronal activity as measured through the fractional X-ray luminosity (R_X = L_X/L_(bol)) has nearly the same age- and rotation inferring capability as chromospheric activity measured through R'_(HK). As a first application of our calibrations, we provide new activity-derived age estimates for a volume-limited sample of the 108 solar-type field dwarfs within 16 pc.

1,325 citations

Journal ArticleDOI
TL;DR: The Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project as discussed by the authors provides a set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art 1D stellar evolution package.
Abstract: This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages ($5 \leq \rm \log(Age)\;[yr] \leq 10.3$), masses ($0.1 \leq M/M_{\odot} \leq 300$), and metallicities ($-2.0 \leq \rm [Z/H] \leq 0.5$). The models are self-consistently and continuously evolved from the pre-main sequence to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the pre-main sequence to the end of core helium burning for $-4.0 \leq \rm [Z/H] < -2.0$. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at this http URL

1,301 citations