scispace - formally typeset
Search or ask a question
Author

R. J. Nelson

Bio: R. J. Nelson is an academic researcher from Vanderbilt University. The author has contributed to research in topics: Retina & Cortex (anatomy). The author has an hindex of 20, co-authored 21 publications receiving 5830 citations. Previous affiliations of R. J. Nelson include National Institutes of Health & Max Planck Society.

Papers
More filters
Journal ArticleDOI
TL;DR: The cortical representations of the hand in area 3b in adult owl monkeys were defined with use of microelectrode mapping techniques 2–8 months after surgical amputation of digit 3, or of both digits 2 and 3.
Abstract: The cortical representations ofthe hand in area 3b in adult owl monkeys were defined with use of microelectrode mapping techniques 2-8 months after surgical amputation of digit 3, or of both digits 2 and 3. Digital nerves were tied to prevent their regeneration within the amputation stump. Suc­ cessive maps were derived in several monkeys to determine the nature of changes in map organization in the same individuals over time. In all monkeys studied, the representations of adjacent digits and pal­ mar surfaces expanded topographically to occupy most or all of the cortical territories formerly representing the amputated digit(s). With the expansion of the representations of these surrounding skin surfaces (1) there were severalfold increases in their magnification and (2) roughly corresponding decreases in receptive field areas. Thus, with increases in magnification, surrounding skin surfaces were represented in correspondingly finer grain, implying that the rule relating receptive field overlap to separation in distance across the cortex (see Sur et aI., '80) was dynamically maintained as receptive fields progressively decreased in size. These studies also revealed that: (1) the discontinuities between the representations of the digits underwent significant translocations (usually by hundreds of microns) after amputation, and sharp new discontinuous boundaries formed where usually separated, expanded digital representa­ tions (e.g., of digits 1 and 4) approached each other in the reorganizing map, implying that these map discontinuities are normally dynamically main­ tained. (2) Changes in receptive field sizes with expansion of representations of surrounding skin surfaces into the deprived cortical zone had a spatial distribution and time course similar to changes in sensory acuity on the stumps of human amputees. This suggests that experience-dependent map changes result in changes in sensory capabilities. (3) The major topographic changes were limited to a cortical zone 500-700 JIm on either side of the initial boundaries of the representation of the amputated digits. More dis­ tant regions did not appear to reorganize (i.e., were not occupied by inputs from surrounding skin surfaces) even many months after amputation. (4) The representations of some skin surfaces moved in entirety to locations within the former territories of representation of amputated digits in every

1,327 citations

Journal ArticleDOI
TL;DR: This paper found that after the median nerve was transected and ligated in adult owl and squirrel monkeys, the cortical sectors representing it within skin surface representations in Areas 3b and 1 were completely occupied by 'new' and expanded representations of surrounding skin fields.

948 citations

Journal ArticleDOI
TL;DR: The results of studies directed toward determining the time course and likely mechanisms underlying this remarkable plasticity of the cortex representing the skin of the median nerve within parietal somatosensory fields 3b and 1 are described.

725 citations

Journal ArticleDOI
04 May 1979-Science
TL;DR: In this article, the classical primary somatosensory cortex of monkeys consists of as many as four separate body representations rather than just one, and two complete body surface representations occupy cortical fields 3b and 1.
Abstract: Microelectrode mapping experiments indicate that the classical primary somatosensory cortex of monkeys consists of as many as four separate body representations rather than just one. Two complete body surface representations occupy cortical fields 3b and 1. In addition, area 2 contains an orderly representation of predominantly "deep" body tissues. Area 3a may constitute a fourth representation.

679 citations

Journal ArticleDOI
TL;DR: The somatotopic organization of the postcentral parietal cortex of the Old World monkey, Macaca fascicularis, was determined with multi‐unit microelectrode recordings and it is suggested that the representation in Area 3b is homologous to “SmI” (or “SI”) in non‐primates.
Abstract: The somatotopic organization of the postcentral parietal cortex of the Old World monkey, Macaca fascicularis, was determined with multi-unit microelectrode recordings. The results lead to the following conclusions: 1) There are at least two complete and systematic representations of the contralateral body surface in the cortex of the postcentral gyrus. One representation is contained within Area 3b, the other within Area 1. 2) While there are important differences in the organization of the two representations, they are basically mirror-images of each other. 3) Each representation maintains body-surface adjacency by cortical adjacency in some mediolateral regions. In other regions, two types of discontinuities can be described: first, in which adjacent body surfaces are represented in separate cortical loci; second, in which adjacent cortical regions represent disparate body-surface regions. The internal organization of each representation is better described as a composite of somatotopic regions (Merzenich et al., '78) than as a serial array of dermatomal bands, or as a "homunculus." 4) While architectonic Area 2 responds to stimulation of deep body tissue, at least parts of Area 2 also respond to cutaneous stimulation. The organiation of the cutaneous representation of the hand in Area 2 is basically a mirror-image of the hand representation in Area 1. 5) Area 3a is activated by deep body tissue stimulation, suggesting the possibility of a fourth body representation within the traditional "S-I" region of somatosensory cortex in macaques. In accord with a previous study in a New World monkey (Merzenich et al., '78), we suggest that the cutaneous representation in Area 3b be considered as SI proper, and that the cutaneous representation in Area 1 be termed the posterior cutaneous field. Furthermore, based on the orientation of the representations of the body surface, as well as other factors, we suggest that the representation in Area 3b is homologous to "SmI" (or "SI") in non-primates.

421 citations


Cited by
More filters
Journal ArticleDOI
01 Sep 1990
TL;DR: The self-organizing map, an architecture suggested for artificial neural networks, is explained by presenting simulation experiments and practical applications, and an algorithm which order responses spatially is reviewed, focusing on best matching cell selection and adaptation of the weight vectors.
Abstract: The self-organized map, an architecture suggested for artificial neural networks, is explained by presenting simulation experiments and practical applications. The self-organizing map has the property of effectively creating spatially organized internal representations of various features of input signals and their abstractions. One result of this is that the self-organization process can discover semantic relationships in sentences. Brain maps, semantic maps, and early work on competitive learning are reviewed. The self-organizing map algorithm (an algorithm which order responses spatially) is reviewed, focusing on best matching cell selection and adaptation of the weight vectors. Suggestions for applying the self-organizing map algorithm, demonstrations of the ordering process, and an example of hierarchical clustering of data are presented. Fine tuning the map by learning vector quantization is addressed. The use of self-organized maps in practical speech recognition and a simulation experiment on semantic mapping are discussed. >

7,883 citations

01 Jan 1990
TL;DR: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article, where the authors present an overview of their work.
Abstract: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article.

2,933 citations

Journal ArticleDOI
Pasko Rakic1
08 Jul 1988-Science
TL;DR: The radial unit model provides a framework for understanding cerebral evolution, epigenetic regulation of the parcellation of cytoarchitectonic areas, and insight into the pathogenesis of certain cortical disorders in humans.
Abstract: How the immense population of neurons that constitute the human cerebral neocortex is generated from progenitors lining the cerebral ventricle and then distributed to appropriate layers of distinctive cytoarchitectonic areas can be explained by the radial unit hypothesis. According to this hypothesis, the ependymal layer of the embryonic cerebral ventricle consists of proliferative units that provide a proto-map of prospective cytoarchitectonic areas. The output of the proliferative units is translated via glial guides to the expanding cortex in the form of ontogenetic columns, whose final number for each area can be modified through interaction with afferent input. Data obtained through various advanced neurobiological techniques, including electron microscopy, immunocytochemistry, [3H]thymidine and receptor autoradiography, retrovirus gene transfer, neural transplants, and surgical or genetic manipulation of cortical development, furnish new details about the kinetics of cell proliferation, their lineage relationships, and phenotypic expression that favor this hypothesis. The radial unit model provides a framework for understanding cerebral evolution, epigenetic regulation of the parcellation of cytoarchitectonic areas, and insight into the pathogenesis of certain cortical disorders in humans.

2,894 citations

Journal Article
TL;DR: In this article, the authors propose that the brain produces an internal representation of the world, and the activation of this internal representation is assumed to give rise to the experience of seeing, but it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness.
Abstract: Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The outside world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the governing laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Several lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual \"filling in,\" visual stability despite eye movements, change blindness, sensory substitution, and color perception.

2,271 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose that the brain produces an internal representation of the world, and the activation of this internal representation is assumed to give rise to the experience of seeing, but it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness.
Abstract: Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The outside world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the governing laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Several lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual “filling in,” visual stability despite eye movements, change blindness, sensory substitution, and color perception.

2,264 citations