scispace - formally typeset
Search or ask a question
Author

R. J. Oakes

Bio: R. J. Oakes is an academic researcher from Northwestern University. The author has contributed to research in topics: Pseudoscalar & Meson. The author has an hindex of 3, co-authored 3 publications receiving 1520 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the behavior under SU3×SU3 of the hadron energy density and the closely related question of how the divergences of the axial-vector currents and the strangeness-changing vector currents transform under SU 3×SU 3.
Abstract: We investigate the behavior under SU3×SU3 of the hadron energy density and the closely related question of how the divergences of the axial-vector currents and the strangeness-changing vector currents transform under SU3×SU3. We assume that two terms in the energy density break SU3×SU3 symmetry; under SU3 one transforms as a singlet, the other as the member of an octet. The simplest possible behavior of these terms under chiral transformations is proposed: They are assigned to a single (3,3*)+(3*,3) representation of SU3×SU3 and parity together with the current divergences. The commutators of charges and current divergences are derived in terms of a single constant c that describes the strength of the SU3-breaking term relative to the chiral symmetry-breaking term. The constant c is found not to be small, as suggested earlier, but instead close to the value (-sqrt[2]) corresponding to an SU2×SU2 symmetry, realized mainly by massless pions rather than parity doubling. Some applications of the proposed commutation relations are given, mainly to the pseudoscalar mesons, and other applications are indicated.

1,475 citations

Book ChapterDOI
01 Jan 2010
TL;DR: In this article, the authors investigated the behavior under SU3×SU3 of the hadron energy density and the closely related question of how the divergences of the axial-vector currents and the strangeness-changing vector currents transform under SU 3×SU 3.
Abstract: We investigate the behavior under SU3×SU3 of the hadron energy density and the closely related question of how the divergences of the axial-vector currents and the strangeness-changing vector currents transform under SU3×SU3. We assume that two terms in the energy density break SU3×SU3 symmetry; under SU3 one transforms as a singlet, the other as the member of an octet. The simplest possible behavior of these terms under chiral transformations is proposed: They are assigned to a single (3,3*)+(3*,3) representation of SU3×SU3 and parity together with the current divergences. The commutators of charges and current divergences are derived in terms of a single constant c that describes the strength of the SU3-breaking term relative to the chiral symmetry-breaking term. The constant c is found not to be small, as suggested earlier, but instead close to the value (-sqrt[2]) corresponding to an SU2×SU2 symmetry, realized mainly by massless pions rather than parity doubling. Some applications of the proposed commutation relations are given, mainly to the pseudoscalar mesons, and other applications are indicated.

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a systematic study is made of the non-perturbative effects in quantum chromodynamics, where the basic object is the two-point functions of various currents and the terms of this series are shown to be of two distinct types.

3,874 citations

Journal ArticleDOI
TL;DR: A new form of document coupling called co-citation is defined as the frequency with which two documents are cited together, and clusters of co- cited papers provide a new way to study the specialty structure of science.
Abstract: A new form of document coupling called co-citation is defined as the frequency with which two documents are cited together. The co-citation frequency of two scientific papers can be determined by comparing lists of citing documents in the Science Citation Index and counting identical entries. Networks of co-cited papers can be generated for specific scientific specialties, and an example is drawn from the literature of particle physics. Co-citation patterns are found to differ significantly from bibliographic coupling patterns, but to agree generally with patterns of direct citation. Clusters of co-cited papers provide a new way to study the specialty structure of science. They may provide a new approach to indexing and to the creation of SDI profiles.

3,846 citations

Journal ArticleDOI
TL;DR: In this article, the low energy representation of several Green's functions and form factors and of the na scattering amplitude are calculated in terms of a few constants, which may be identified with the coupling constants of a unique effective low energy Lagrangian.

3,277 citations

Journal ArticleDOI
TL;DR: In this article, the dispersion charmonium theory was extended to include power terms due to the nonperturbative effects of QCD, and an estimate for the gluonic vacuum expectation value was derived.

1,902 citations

Journal ArticleDOI
TL;DR: In this article, an alternative to specific Lagrangian models of current algebra is proposed, in which scale invariance is a broken symmetry of strong interactions, as proposed by Kastrup and Mack.
Abstract: An alternative is proposed to specific Lagrangian models of current algebra. In this alternative there are no explicit canonical fields, and operator products at the same point [say, ${j}_{\ensuremath{\mu}}(x){j}_{\ensuremath{\mu}}(x)$] have no meaning. Instead, it is assumed that scale invariance is a broken symmetry of strong interactions, as proposed by Kastrup and Mack. Also, a generalization of equal-time commutators is assumed: Operator products at short distances have expansions involving local fields multiplying singular functions. It is assumed that the dominant fields are the $\mathrm{SU}(3)\ifmmode\times\else\texttimes\fi{}\mathrm{SU}(3)$ currents and the $\mathrm{SU}(3)\ifmmode\times\else\texttimes\fi{}\mathrm{SU}(3)$ multiplet containing the pion field. It is assumed that the pion field scales like a field of dimension $\ensuremath{\Delta}$, where $\ensuremath{\Delta}$ is unspecified within the range $1\ensuremath{\le}\ensuremath{\Delta}l4$; the value of $\ensuremath{\Delta}$ is a consequence of renormalization. These hypotheses imply several qualitative predictions: The second Weinberg sum rule does not hold for the difference of the ${K}^{*}$ and axial-${K}^{*}$ propagators, even for exact $\mathrm{SU}(2)\ifmmode\times\else\texttimes\fi{}\mathrm{SU}(2)$; electromagnetic corrections require one subtraction proportional to the $I=1$, ${I}_{z}=0\ensuremath{\sigma}$ field; $\ensuremath{\eta}\ensuremath{\rightarrow}3\ensuremath{\pi}$ and ${\ensuremath{\pi}}_{0}\ensuremath{\rightarrow}2\ensuremath{\gamma}$ are allowed by current algebra. Octet dominance of nonleptonic weak processes can be understood, and a new form of superconvergence relation is deduced as a consequence. A generalization of the Bjorken limit is proposed.

1,493 citations